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Introduction
In spite of bounds on space, time, and data, people are

able to make good decisions in complex scenarios. What

enables us to do so? And what might equip artificial

systems to do the same? One essential ingredient for

making complex problem solving tractable is a capacity

for exploiting abstract representation.

To illustrate why abstractions are needed for adaptive

decision making, consider hiking in a forest (Figure 1). A

river runs from mountains in the north down south through

the forest, and you have set up camp in a clearing just east of

the river. As the sun begins to set, you find yourself west of

the river and want to return to camp. How do you accom-

plish this task? You might reason, “Since I am on the west
side of the river, I probably want to cross the river to get to the

east side of the riverandthen walk towards my campsite.” Such a

compact thought is possible because you have abstract

representations for that support decision making: These

include the general notion of being in a location relative to

the axis of the river, or the rough ideas of crossing the river

and moving towards the campsite.

Without abstractions, decision making would be confined to

specific, low-level states and actions—e.g., “At the current

state, rotateyour left leg 25�, placeit down beside therock on

the path, then swing your arm forward...”. In a huge and

complex scenario like navigating through a forest, this

approach is both cognitively unwieldy and, in a fundamental

sense, computationally intractable [1,2]. The difficulty is

due to decision-making costs that arise from two interrelated

sources. First, agents need to learn about their environment,

which costs time and experience (e.g., via exploration) [3].
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Second, agents need to compute decision-theoretic quanti-

ties, which costs memory and thought (e.g., via planning) [4].

As problems grow, these costs grow exponentially. Abstrac-

tions are essential because they enable decision makers to

manage the growth of these costs.

Within psychology and neuroscience, abstraction plays a

key role in the hierarchical learning and organization of

motor sequences [5–7], habits [8–10], and planning

[11,12]. For this reason, researchers in artificial intelli-

gence (AI) and reinforcement learning (RL) have long

been interested in how to leverage abstraction to provide

human-like solutions to human-level problems [13–18].

In this paper, we discuss work in AI and RL that helps

elucidate how abstractions support efficient decision

making in both people and machines.

Research in AI and RL focuses on two broad types of

abstraction. First, state abstractions treat certain configura-

tions of the environment as similar by aggregating them or

assigning them shared features. For instance, in the hiking

example, being west of the river is not a single concrete

configuration of the environment, but rather an abstract

representation that covers many concrete states (e.g., being

different distances west of the river). Second, temporal
abstractions (often called “options”) are temporally extended

macro-actions that describe a general course of action. For

example, the idea of crossing the bridge is not a single specific

action, but rather captures many possible courses of action.

State and temporal abstractions enable compact repre-

sentation of a domain. For instance, Figure 2a represents

the hiking example as a graph where nodes are specific

configurations of the environment (i.e., ground states) and

edges are transitions to new configurations resulting from

taking actions. The appropriate abstractions could induce

the simpler problem representation in Figure 2b. This

new model ignores irrelevant details like the color of

specific trees while capturing useful distinctions such as

your location relative to the river. As a result, it supports

efficient learning and requires little thought to reason

about compared to the original version.

The foregoing discussion sketches out how abstractions

can support efficient decision making. But how could it

work in practice? Here, we dive into recent work in AI and

RL that provides some answers. Specifically, we focus on

three ways in which abstractions have been shown to

facilitate efficient and scalable decision making. First,

abstractions guide exploration and generalization by system-

atically modifying the distribution of learning experi-

ences. In particular, abstractions can guide how agents
Current Opinion in Behavioral Sciences 2019, 29:111–116
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Figure 1

An environment, an agent, and the agent’s abstract representation of a domain.
explore and generalize based on environmental structure

or representational simplicity. Second, abstractions facili-
tate efficient tradeoffs in learning. For example, they enable

learning time and optimality to be exchanged as well as

support optimal transfer between tasks. Finally, abstrac-

tion is essential for simplifying computation. For instance,

abstractions influence the cost of computing a good plan

by inducing simpler or more complex planning models. In

the following sections, we discuss each of these benefits

of abstraction.

Abstractions guide exploration and
generalization
Suppose during your camping trip you want to learn to

fish. At first, you try a few spots along the river at random.

But soon, you notice a pattern: Certain areas have more

vegetation, others have less. This information provides a

new and more efficient way for you to organize your

fishing attempts. For example, you could fish areas with

high and low vegetation to gain a range of experiences

about how it affects your catch. Or, on your first trip you

may learn that your best catches were in high vegetation

are, so that on your second trip to a different river you

seek out similar areas. Here, the abstract concept of river

vegetation guides your exploration in the current fishing

task and tracks a generalizable feature relevant to future

tasks, which both allow you to make better use of your

limited time and experience.

In RL, abstractions similarly facilitate efficient learning

by guiding exploration and generalization. But what is the

basis of this guidance? Put another way, the concept of

vegetation is useful, but what determines the identifica-

tion of such a concept in general? Below, we discuss two

ways in which abstractions can guide learning: domain

structure and representational simplicity.
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Domain structure

Many domains have meaningful structure based on the

topology of state connections. In the hiking example,

being west of the river is an intuitive abstract state because

all the locations west of the river are more connected to

one another and less connected to locations east of the

river. Early research in RL identified a number strate-

gies for learning abstractions based on clustering or

graph-theoretic notions like “bottleneck” states [19].

More recent methods generalize such approaches to

learn abstractions based on the state connectivity

induced by a domain’s structure. For instance, the

successor representation [20–22,69–71] and successor features
[23�,24] are state abstractions based on how likely an

agent is to visit other states or features. A similar idea

underpins eigen-options [25,26�,27]. Specifically, both

successor representations and eigen-options involve

decomposing a domain’s structure into a set of

“principal components” that compactly represent how

certain regions of a domain are connected or will be

visited.

Thus, being west of the river and being east of the river could

emerge as successor-based state abstractions due to the

connectivity and visitation of their respective ground

states. A corresponding eigen-option would express the

temporally abstract action of going from the west side to the
east side since action sequences falling in this category

capture a principal source of variance in connectivity.

Notably, abstractions based on state connectivity encode

information about the dynamics of a domain separate

from its reward structure. These reward-agnostic repre-

sentations can be learned either offline or during task

learning, but, in either case, they provide an especially

powerful and efficient way to adapt when rewards

change or when transferring to tasks with related

dynamics.
www.sciencedirect.com
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Figure 2

(a) A domain in all of its complexity, and (b) the representation induced by an effective set of state and temporal abstractions for this domain. The

representation in (b) facilitates efficient learning and computation, unlike the one in (a).
Representational simplicity

Abstractions also guide exploration and generalization

based on representational simplicity. Simplicity plays a

key role in understanding representations in humans

[28,29] and machines [30]. For finite decision makers,

simplicity is important because it enables compression,
the representation of information using less physical space

(e.g., memory).

In RL, a number of methods have been developed that

leverage a bias towards representational simplicity. For

example, curiosity-driven learning [31–33,34��,35,36] pits a

motivation to learn a simple, compressed representation

of the world against a desire for new experiences that do

not easily fit within that representation. Placing these two

processes in competition with one another prevents the

drive for simplicity from compressing everything into a

single undifferentiated representation that cannot sup-

port high quality decisions and instead pushes the system

to adaptively explore a range of qualitatively different

parts of a task. Doing so ultimately allows the architecture

to both represent the world compactly and explore it

efficiently.

Simplicity also plays a role in the Option-Critic frame-

work [37��,38,39], a neural network architecture that

simultaneously learns abstract macro-actions and the

value of low-level actions that constitute them. By con-

currently learning at multiple levels of abstraction, the

agent acquires a representation that leads to better trans-

fer to new tasks. The process at play is closely related to

the notion of a “blessing of abstraction” in causal learning

[40] and regularization in supervised learning [41]: A bias
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towards simple, unifying representations not only saves

on representational space, but also prevents overfitting to

a particular task. An important consequence of this bias is

that the agent is able to transfer to new tasks more

efficiently.

Abstractions facilitate efficient tradeoffs
Decision making and learning involve tradeoffs when

space, time, and data are limited. But, it is important

that these tradeoffs be made efficiently (i.e., without

unnecessary costs). Here, we discuss how abstractions

can efficiently trade off learning time and optimality, as

well as minimize negative transfer between tasks.

Learning time and optimality

Imagine that every morning you wake up at your campsite

and need to navigate to the bridge crossing the river.

What kind of abstract states would be useful? It depends

on how much time you have to spend learning. One

option is to learn every tree, rock, and shortcut through

the forest in great detail. Doing so has the benefit of

ensuring you learn a highly efficient route to the bridge.

An alternative strategy is to learn a less detailed repre-

sentation of the forest that takes you to an obvious

landmark—e.g., the river—and then take a simple path

to the bridge. This second approach may be more costly

in terms of the physical actions taken or time navigating,

but is simpler and faster to learn. Depending on how

much time and data are available, it may be better for the

agent to pursue the second strategy than the first.

Learning the simpler but suboptimal policy depends on

the resolution of the state abstractions used—i.e., the
Current Opinion in Behavioral Sciences 2019, 29:111–116
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amount of detail one is willing to keep or ignore about the

environment. In RL, a number of approaches use abstrac-

tion in this manner to efficiently balance optimality and

learning time [42�,43]. For instance, if abstractions are

represented by aggregating ground states into clusters,

adaptively modulating the size of the clusters and granu-

larity of the state representation controls this tradeoff

[44,33,45].

Optimizing transfer between tasks

Abstractions also facilitate effective transfer from one task

to another. Transfer can be positive [46,47,37��], but it

can also be negative [48]. Ideally, an agent would learn

abstractions that avoid negative transfer as much as pos-

sible while increasing the possibility of positive transfer.

One setting in which this approach is feasible is in lifelong
learning, in which an agent is assumed to be continuously

receiving tasks from a distribution of tasks. Given sepa-

rate phases of discovering and using temporal abstrac-

tions, it is possible to ensure that any learned options only

help later learning and decision making [49]. Used prop-

erly, temporal abstractions can also guarantee that the

amount of data needed for learning is reduced even

within a single task [50,51,72]. For agents with limited

time, such abstractions can play a critical role in ensuring

efficient and effective use of data.

Abstractions simplify computation
Computation is costly for people [52] as well as artificial

agents [53]. For example, if you were to plan a hike back

to your campsite, you could simulate possible routes from

your current location or “work backwards” from your final

destination. These cognitive operations require time and

mental effort. However, the total cost of computation

depends directly on the model such operations occur over

[16]. Planning can be easier given a good abstract repre-

sentation (e.g., compare Figure 2a and Figure 2b). Recent

work in RL leverages this intuition to efficiently scale

planning to complex domains. Here, we focus on two

broad approaches: algorithm-specific abstractions, in which

an abstraction scheme is tailored to take advantage of

particular features of a planning algorithm, and end-to-end
approaches, in which learning abstractions for planning

occurs in the context of a more general learning

architecture.

Algorithm-specific abstractions

Algorithms such as Monte Carlo Tree Search [54–56] are

based on the notion of forward simulation: From an initial

state, candidate plans are generated, evaluated, and the

best is chosen. The major problem for these algorithms is

branching: Each additional timestep into the future

increases the number of plans to evaluate multiplica-

tively. To keep branching manageable, state-aggregation

techniques simplify models by only storing relevant

information. For instance, by treating all states with

the same optimal action as identical, branching due to
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stochasticity in action outcomes can be reduced [57–59].

Along similar lines, the model used for planning can be

simplified by aggregating states that lead to the same

possible outcomes within a few time steps [60].

An alternative to forward simulation is backwards induction,
which involves starting from possible future states and

propagating information backwards to possible precursor

states. Abstractions can also assist computation in backward

induction. For instance, value iteration [1] repeatedly

“sweeps” over a set of states and backs up information

to each precursor state. Since each iteration involves look-

ing at every state in the planning model, it is extremely

sensitive to the number of possible states. However, by

incorporating temporal abstractions into the planning

model, more information can be propagated further back-

wards on each sweep [61] and it becomes possible to more

efficiently trade off error in the approximation of future

rewards with computation [62].

Finally, relaxing the goal of planning provides opportu-

nities to leverage powerful abstractions. For instance, plan
feasibility seeks to determine whether a plan can be

constructed that satisfies some set of constraints. Since

the goal is no longer optimality but simply satisfiability,
relevant aspects of the task can be translated into sym-

bolic logic and efficiently tested [63–65].

End-to-end efficient planning

Another approach is to learn planning abstractions while

also learning everything else about a task in an end-to-end
manner with neural networks. Using abstractions for

planning is especially important because planning in a

ground state space (e.g., the pixels of a video game) is only

possible for short time horizons [66]. To address these

limitations, architectures have been developed that learn

and use abstract representations for planning. In particu-

lar, the abstract representation needs to be trained to

predict future rewards, thus preserving the most relevant

information for decision making in the planning model

[67�,68,73].

Conclusion
Abstractions are key for efficiently scaling decision mak-

ing. In particular, recent research in RL demonstrates

how state and temporal abstractions guide exploration

and generalization, facilitate efficient tradeoffs, and sim-

plify computations. In the context of learning and deci-

sion making with limited resources, abstractions enable

agents to strategically manage finite space, time, and data,

which is necessary for scaling problem solving to complex

tasks.

For psychologists, this analysis raises questions about why

biological agents like humans have certain types of

abstract representations. For instance, humans and other

organisms may have certain abstractions not only because
www.sciencedirect.com
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they facilitate effective exploration and generalization but

because they support fast planning or modulate critical

tradeoffs during learning. Future work in both computer

science and psychology will need to identify other pres-

sures that can shape abstraction learning—such as the need

to communicate and coordinate with others—to offer a

clearer understanding of the value of abstraction.
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