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Abstract

Reward is the driving force for reinforcement-learning agents. This paper is
dedicated to understanding the expressivity of reward as a way to capture tasks
that we would want an agent to perform. We frame this study around three new
abstract notions of “task” that might be desirable: (1) a set of acceptable behaviors,
(2) a partial ordering over behaviors, or (3) a partial ordering over trajectories.
Our main results prove that while reward can express many of these tasks, there
exist instances of each task type that no Markov reward function can capture. We
then provide a set of polynomial-time algorithms that construct a Markov reward
function that allows an agent to optimize tasks of each of these three types, and
correctly determine when no such reward function exists. We conclude with an
empirical study that corroborates and illustrates our theoretical findings.

1 Introduction

How are we to use algorithms for reinforcement learning (RL) to solve problems of relevance in the
world? Reward plays a significant role as a general purpose signal: For any desired behavior, task, or
other characteristic of agency, there must exist a reward signal that can incentivize an agent to learn
to realize these desires. Indeed, the expressivity of reward is taken as a backdrop assumption that
frames RL, sometimes called the reward hypothesis: “...all of what we mean by goals and purposes
can be well thought of as maximization of the expected value of the cumulative sum of a received
scalar signal (reward)” [53, 29, 6]. In this paper, we establish first steps toward a systematic study of
the reward hypothesis by examining the expressivity of reward as a signal. We proceed in three steps.

1. An Account of “Task”. As rewards encode tasks, goals, or desires, we first ask, “what is
a task?”. We frame our study around a thought experiment (Figure 1) involving the interactions
between a designer, Alice, and a learning agent, Bob, drawing inspiration from Ackley and Littman
[2], Sorg [50], and Singh et al. [46]. In this thought experiment, we draw a distinction between how
Alice thinks of a task (TASKQ) and the means by which Alice incentivizes Bob to pursue this task
(EXPRESSIONQ). This distinction allows us to analyze the expressivity of reward as an answer to the
latter question, conditioned on how we answer the former. Concretely, we study three answers to
the TASKQ in the context of finite Markov Decision Processes (MDPs): A task is either (1) a set of
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Figure 1: Alice, Bob, and the artifacts of task definition (blue) and task expression (purple).

acceptable behaviors (policies), (2) a partial ordering over behaviors, or (3) a partial ordering over
trajectories. Further detail and motivation for these task types is provided in Section 3, but broadly
they can be viewed as generalizations of typical notions of task such as a choice of goal or optimal
behavior. Given these three answers to the TASKQ, we then examine the expressivity of reward.

2. Expressivity of Markov Reward. The core of our study asks whether there are tasks Alice
would like to convey—as captured by the answers to the TASKQ—that admit no characterization
in terms of a Markov reward function. Our emphasis on Markov reward functions, as opposed to
arbitrary history-based reward functions, is motivated by several factors. First, disciplines such as
computer science, psychology, biology, and economics typically rely on a notion of reward as a
numerical proxy for the immediate worth of states of affairs (such as the financial cost of buying
a solar panel or the fitness benefits of a phenotype). Given an appropriate way to describe states
of affairs, Markov reward functions can represent immediate worth in an intuitive manner that also
allows for reasoning about combinations, sequences, or re-occurrences of such states of affairs.
Second, it is not clear that general history-based rewards are a reasonable target for learning as they
suffer from the curse of dimensionality in the length of the history. Lastly, Markov reward functions
are the standard in RL. A rigorous analysis of which tasks they can and cannot convey may provide
guidance into when it is necessary to draw on alternative formulations of a problem. Given our focus
on Markov rewards, we treat a reward function as accurately expressing a task just when the value
function it induces in an environment adheres to the constraints of a given task.

3. Main Results. We find that, for all three task types, there are environment–task pairs for which
there is no Markov reward function that realizes the task (Theorem 4.1). In light of this finding, we
design polynomial-time algorithms that can determine, for any given task and environment, whether
a reward function exists in the environment that captures the task (Theorem 4.3). When such a reward
function does exist, the algorithms also return it. Finally, we conduct simple experiments with these
procedures to provide empirical insight into the expressivity of reward (Section 5).

Collectively, our results demonstrate that there are tasks that cannot be expressed by Markov reward
in a rigorous sense, but we can efficiently construct such reward functions when they do exist
(and determine when they do not). We take these findings to shed light on the nature of reward
maximization as a principle, and highlight many pathways for further investigation.

2 Background

RL defines the problem facing an agent that learns to improve its behavior over time by interacting with
its environment. We make the typical assumption that the RL problem is well modeled by an agent
interacting with a finite Markov Decision Process (MDP), defined by the tuple (S,A, R, T, γ, s0).
An MDP gives rise to deterministic behavioral policies, π : S → A, and the value, V π : S → R, and
action–value, Qπ : S ×A → R, functions that measure their quality. We will refer to a Controlled
Markov Process (CMP) as an MDP without a reward function, which we denote E for environment.
We assume that all reward functions are deterministic, and may be a function of either state, state-
action pairs, or state-action-state triples, but not history. Henceforth, we simply use “reward function”
to refer to a deterministic Markov reward function for brevity, but note that more sophisticated settings
beyond MDPs and deterministic Markov reward functions are important directions for future work.
For more on MDPs or RL, see the books by Puterman [41] and Sutton and Barto [54] respectively.
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2.1 Other Perspectives on Reward

We here briefly summarize relevant literature that provides distinct perspectives on reward.

Two Roles of Reward. As Sorg [50] identifies (Chapter 2), reward can both define the task the
agent learns to solve, and define the “bread crumbs” that allow agents to efficiently learn to solve the
task. This distinction has been raised elsewhere [2, 46, 47], and is similar to the extrinsic-intrinsic
reward divide [45, 66]. Tools such as reward design [34, 51] or reward shaping [36] focus on offering
more efficient learning in a variety of environments, so as to avoid issues of sparsity and long-term
credit assignment. We concentrate primarily on reward’s capacity to express a task, and defer learning
dynamics to an (important) stage of future work.

Discounts, Expectations, and Rationality. Another important facet of reward is how it is used in
producing behavior. The classical view offered by the Bellman equation (and the reward hypothesis)
is that the quantity of interest to maximize is expected, discounted, cumulative reward. Yet it is
possible to disentangle reward from the expectation [5], to attend only to ordinal [60] or maximal
rewards [26], or to adopt different forms of discounting [61, 11]. In this work, we take the standard
view that agents will seek to maximize value for a particular discount factor γ, but recognize that
there are interesting directions beyond these commitments, such as inspecting the limits of reward in
constrained MDPs as studied by Szepesvári [56]. We also note the particular importance of work
by Pitis [40], who examines the relationship between classical decision theory [59] and MDPs by
incorporating additional axioms that account for stochastic processes with discounting [24, 35, 48, 49].
Drawing inspiration from Pitis [40] and Sunehag and Hutter [52], we foresee valuable pathways for
future work that further makes contact between RL and various axioms of rationality.

Preferences. In place of numerical rewards, preferences of different kinds may be used to evaluate
an agent’s behaviors, drawing from the literature on preference-learning [25] and ordinal dynamic
programming [8, 35, 48]. This premise gives rise to preference-based reinforcement learning (PbRL)
in which an agent interacts with a CMP and receives evaluative signals in the form of preferences
over states, actions, or trajectories. This kind of feedback inspires and closely parallels the task
types we propose in this work. A comprehensive survey of PbRL by Wirth et al. [64] identifies
critical differences in this setup from traditional RL, categorizes recent algorithmic approaches, and
highlights important open questions. Recent work focuses on analysing the sample efficiency of such
methods [65, 38] with close connections to learning from human feedback in real time [23, 32, 7].

Teaching and Inverse RL. The inverse RL (IRL) and apprenticeship learning literature examine
the problem of learning directly from behavior [37, 1]. The classical problem of IRL is to identify
which reward function (often up to an equivalence class) a given demonstrator is optimizing. We
emphasize the relevance of two approaches: First, work by Syed et al. [55], who first illustrate the
applicability of linear programming [22] to apprenticeship learning; and second, work by Amin
et al. [4], who examine the repeated form of IRL. The methods of IRL have recently been expanded
to include variations of cooperative IRL [14], and assistive learning [43], which offer different
perspectives on how to frame interactive learning problems.

Reward Misspecification. Reward is also notoriously hard to specify. As pointed out by Littman
et al. [30], “putting a meaningful dollar figure on scuffing a wall or dropping a clean fork is chal-
lenging.” Along these lines, Hadfield-Menell et al. [16] identify cases in which well-intentioned
designers create reward functions that produce unintended behavior [39]. MacGlashan et al. [33] find
that human-provided rewards tend to depend on a learning agent’s entire policy, rather than just the
current state. Further, work by Hadfield-Menell et al. [15] and Kumar et al. [27] suggest that there
are problems with reward as a learning mechanism due to misspecification and reward tampering
[10]. These problems have given rise to approaches to reward learning, in which a reward function is
inferred from some evidence such as behavior or comparisons thereof [20].

Other Notions of Task. As a final note, we highlight alternative approaches to task specification.
Building on the Free Energy Principle [13, 12], Hafner et al. [17] consider a variety of task types in
terms of minimization of distance to a desired target distribution [3]. Alternatively, Littman et al. [30]
and Li et al. [28] propose variations of linear temporal logic (LTL) as a mechanism for specifying
a task to RL agents, with related literature extending LTL to the multi-task [58] and multi-agent
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[18] settings, or using reward machines for capturing task structure [19]. Jothimurugan et al. [21]
take a similar approach and propose a task specification language for RL based on logical formulas
that evaluate whether trajectories satisfy the task, similar in spirit to the logical task compositions
framework developed by Tasse et al. [57]. Many of these notions of task are more general than those
we consider. A natural direction for future work broadens our analysis to include these kinds of task.

3 An Account of Reward’s Expressivity: The TASKQ and EXPRESSIONQ

Consider an onlooker, Alice, and an earnest learning agent, Bob, engaged in the interaction pictured
in Figure 1. Suppose that Alice has a particular task in mind that she would like Bob to learn to solve,
and that Alice constructs a reward function to incentivize Bob to pursue this task. Here, Alice is
playing the role of “all of what we mean by goals and purposes” for Bob to pursue, with Bob playing
the role of the standard reward-maximizing RL agent.

Two Questions About Task. To give us leverage to study the expressivity of reward, it is useful to
draw a distinction between two stages of this process: 1) Alice thinks of a task that she would like
Bob to learn to solve, and 2) Alice creates a reward function (and perhaps chooses γ) that conveys
the chosen task to Bob. We inspect these two separately, framed by the following two questions. The
first we call the task-definition question (TASKQ) which asks: What is a task? The second we call
the task-expression question (EXPRESSIONQ) which asks: Which learning signal can be used as a
mechanism for expressing any task to Bob?

Reward Answers The EXPRESSIONQ. We suggest that it may be useful to treat reward as an
answer to the EXPRESSIONQ rather than the TASKQ. On this view, reward is treated as an expressive
language for incentivizing reward-maximizing agents: Alice may attempt to translate any task into a
reward function that incentivizes Bob to pursue the task, no matter which environment Bob inhabits,
which task Alice has chosen, or how she has represented the task to herself. Indeed, it might be the
case that Alice’s knowledge of the task far exceeds Bob’s representational or perceptual capacity.
Alice may know every detail of the environment and define the task based on this holistic vantage,
while Bob must learn to solve the task through interaction alone, relying only on a restricted class of
functions for modeling and decision making.

Under this view, we can assess the expressivity of reward as an answer to the EXPRESSIONQ
conditioned on how we answer the TASKQ. For example, if the TASKQ is answered in terms of
natural language descriptions of desired states of affairs, then reward may fail to convey the chosen
task due to the apparent mismatch in abstraction between natural language and reward (though some
work has studied such a proposal [31, 62]).

3.1 Answers to the TASKQ: What is a Task?

In RL, tasks are often associated with a choice of goal, reward function (R), reward-discount pair
(R, γ), or perhaps a choice of optimal policy (alongside those task types surveyed previously, such as
LTL). However, it is unclear whether these constructs capture the entirety of what we mean by “task”.

For example, consider the Russell and Norvig [42] grid world: A 4×3 grid with one wall, one terminal
fire state, and one terminal goal state (pictured with a particular reward function in Figure 4a). In such
an environment, how might we think about tasks? A standard view is that the task is to reach the goal
as quickly as possible. This account, however, fails to distinguish between the non-optimal behaviors,
such as the costly behavior of the agent moving directly into the fire and the neutral behavior of the
agent spending its existence in the start state. Indeed, characterizing a task in terms of choice of π∗ or
goal fails to capture these distinctions. Our view is that a suitably rich account of task should allow
for the characterization of this sort of preference, offering the flexibility to scale from specifying only
the desirable behavior (or outcomes) to an arbitrary ordering over behaviors (or outcomes).

In light of these considerations, we propose three answers to the TASKQ that can convey general
preferences over behavior or outcome: 1) A set of acceptable policies, 2) A partial ordering over
policies, or 3) A partial ordering over trajectories. We adopt these three as they can capture many
kinds of task while also allowing a great deal of flexibility in the level of detail of the specification.
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Name Notation Generalizes Constraints Induced by T

SOAP ΠG task-as-π∗
equal: V πg (s0) = V πg′ (s0) > V πb(s0),∀πg,πg′∈ΠG,πb∈ΠB

range: V πg (s0) > V πb(s0),∀πg∈ΠG,πb∈ΠB

PO LΠ SOAP (π1 ⊕ π2) ∈ LΠ =⇒ V π1(s0)⊕ V π2(s0)

TO Lτ,N task-as-goal (τ1 ⊕ τ2) ∈ Lτ,N =⇒ G(τ1; s0)⊕G(τ2; s0)

Table 1: A summary of the three proposed task types. We further list the constraints that determine
whether a reward function realizes each task type in an MDP, where we take ⊕ to be one of ‘<’, ‘>’,
or ‘=’, and G is the discounted return of the trajectory.

3.2 SOAPs, POs, and TOs

(SOAP) Set Of Acceptable Policies. A classical view of the equivalence of two reward functions
is based on the optimal policies they induce. For instance, Ng et al. [36] develop potential-based
reward shaping by inspecting which shaped reward signals will ensure that the optimal policy is
unchanged. Extrapolating, it is natural to say that for any environment E, two reward functions
are equivalent if the optimal policies they induce in E are the same. In this way, a task is viewed
as a choice of optimal policy. As discussed in the grid world example above, this notion of task
fails to allow for the specification of the quality of other behaviors. For this reason, we generalize
task-as-optimal-policy to a set of acceptable policies, defined as follows.

Definition 3.1. A set of acceptable policies (SOAP) is a non-empty subset of the deterministic policies,
ΠG ⊆ Π, with Π the set of all deterministic mappings from S to A for a given E.

With one task type defined, it is important to address what it means for a reward function to properly
realize, express, or capture a task in a given environment. We offer the following account.

Definition 3.2. A reward function is said to realize a task T in an environment E just when the
start-state value (or return) induced by the reward function exactly adheres to the constraints of T .

Precise conditions for the realization of each task type are provided alongside each task definition,
with a summary presented in column four of Table 1.

For SOAPs, we take the start-state value V π(s0) to be the mechanism by which a reward function
realizes a SOAP. That is, for a given E and ΠG, a reward function R is said to realize the ΠG in
E when the start-state value function is optimal for all good policies, and strictly higher than the
start-state value of all other policies. It is clear that SOAP strictly generalizes a task in terms of a
choice of optimal policy, as captured by the SOAP ΠG = {π∗}.
We note that there are two natural ways for a reward function to realize a SOAP: First, each πg ∈ ΠG

has optimal start-state value and all other policies are sub-optimal. We call this type equal-SOAP,
or just SOAP for brevity. Alternatively, we might only require that the acceptable policies are each
near-optimal, but are allowed to differ in start-state value so long as they are all better than every
bad policy πb ∈ ΠB . That is, in this second kind, there exists an ε ≥ 0 such that every πg ∈ ΠG is
ε-optimal in start-state value, V ∗(s0)− V πg (s0) ≤ ε, while all other policies are worse. We call this
second realization condition range-SOAP. We note that the range realization generalizes the equal
one: Every equal-SOAP is a range-SOAP (by letting ε = 0). However, there exist range-SOAPs that
are expressible by Markov rewards that are not realizable as an equal-SOAP. We illustrate this fact
with the following proposition. All proofs are presented in Appendix B.

Proposition 3.1. There exists a CMP, E, and choice of ΠG such that ΠG can be realized under the
range-SOAP criterion, but cannot be realized under the equal-SOAP criterion.

One such CMP is pictured Figure 2b. Consider the SOAP ΠG = {π11, π12, π21}: Under the equal-
SOAP criterion, if each of these three policies are made optimal, any reward function will also make
π22 (the only bad policy) optimal as well. In contrast, for the range criterion, we can choose a reward
function that assigns lower rewards to a2 than a1 in both states. In general, we take the equal-SOAP
realization as canonical, as it is naturally subsumed by our next task type.
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(PO) Partial Ordering on Policies. Next, we suppose that Alice chooses a partial ordering on
the deterministic policy space. That is, Alice might identify a some great policies, some good, and
some bad policies to strictly avoid, and remain indifferent to the rest. POs strictly generalize equal
SOAPs, as any such SOAP is a special choice of PO with only two equivalence classes. We offer the
following definition of a PO.
Definition 3.3. A policy order (PO) of the deterministic policies Π is a partial order, denoted LΠ.

As with SOAPs, we take the start-state value V π(s0) induced by a reward function R as the mech-
anism by which policies are ordered. That is, given E and LΠ, we say that a reward function R
realizes LΠ in E if and only if the resulting MDP, M = (E,R), produces a start-state value function
that orders Π according to LΠ.

(TO) Partial Ordering on Trajectories. A natural generalization of goal specification enriches
a notion of task to include the details of how a goal is satisfied—that is, for Alice to relay some
preference over trajectory space [63], as is done in preference based RL [64]. Concretely, we suppose
Alice specifies a partial ordering on length N trajectories of (s, a) pairs, defined as follows.
Definition 3.4. A trajectory ordering (TO) of length N ∈ N is a partial ordering Lτ,N , with each
trajectory τ consisting of N state–action pairs, {(s0, a0), . . . , (aN−1, sN−1)}, with s0 the start state.

As with PO, we say that a reward function realizes a trajectory ordering Lτ,N if the ordering
determined by each trajectory’s cumulative discounted N -step return from s0, denoted G(τ ; s0),
matches that of the given Lτ,N . We note that trajectory orderings can generalize goal-based tasks at
the expense of a larger specification. For instance, a TO can convey the task, “Safely reach the goal
in less than thirty steps, or just get to the subgoal in less than twenty steps.”

Recap. We propose to assess the expressivity of reward by first answering the TASKQ in terms of
SOAPs, POs, or TOs, as summarized by Table 1. We say that a task T is realized in an environment
E under reward function R if the start-state value function (or return) produced by R imposes the
constraints specified by T , and are interested in whether reward can always realize a given task in
any choice of E. We make a number of assumptions along the way, including: (1) Reward functions
are Markov and deterministic, (2) Policies of interest are deterministic, (3) The environment is a finite
CMP, (4) γ is part of the environment, (5) We ignore reward’s role in shaping the learning process,
(6) Start-state value or return is the appropriate mechanism to determine if a reward function realizes
a given task. Relaxation of these assumptions is a critical direction for future work.

4 Analysis: The Expressivity of Markov Reward

With our definitions and objectives in place, we now present our main results.

4.1 Express SOAPs, POs, and TOs

We first ask whether reward can always realize a given SOAP, PO, or TO, for an arbitrary E. Our first
result states that the answer is “no”—there are tasks that cannot be realized by any reward function.
Theorem 4.1. For each of SOAP, PO, and TO, there exist (E,T ) pairs for which no Markow reward
function realizes T in E.

Thus, reward is incapable of capturing certain tasks. What tasks are they, precisely? Intuitively,
inexpressible tasks involve policies or trajectories that must be correlated in value in an MDP. That is,
if two policies are nearly identical in behavior, it is unlikely that reward can capture the PO that places
them at opposite ends of the ordering. A simple example is the “always move the same direction” task
in a grid world, with state defined as an (x, y) pair. The SOAP ΠG = {π←, π↑, π→, π↓} conveys this
task, but no Markov reward function can make these policies strictly higher in value than all others.

Example: Inexpressible SOAPs. Observe the two CMPs pictured in Figure 2, depicting two kinds
of inexpressible SOAPs. On the left, we consider the SOAP ΠG = {π21}, containing only the policy
that executes a2 in the left state (s0), and a1 in the right (s1). This SOAP is inexpressible through
reward, but only because reward cannot distinguish the start-state value of π21 and π22 since the
policies differ only in an unreachable state. This is reminiscent of Axiom 5 from Pitis [40], which
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Figure 2: Two CMPs in which there is a SOAP that is not expressible under any Markov reward
function. On the left, ΠG = {π21} is not realizable, as π21 can not be made better than π22 because
s1 is never reached. On the right, the XOR-like-SOAP, ΠG = {π12, π21} is not realizable: To make
these two policies optimal, it is entailed that π22 and π11 must be optimal, too.

explicitly excludes preferences of this sort. On the right, we find a more interesting case: The chosen
SOAP is similar to the XOR function, ΠG = {π12, π21}. Here, the task requires that the agent choose
each action in exactly one state. However, there cannot exist a reward function that makes only these
policies optimal, as by consequence, both policies π11 and π22 must be optimal as well.

Next, we show that Theorem 4.1 is not limited to a particular choice of transition function or γ.
Proposition 4.2. There exist choices of E¬T = (S,A, γ, s0) or E¬γ = (S,A, T, s0), together with
a task T , such that there is no (T,R) pair that realizes T in E¬T or (R, γ) in E¬γ .

This result suggests that the scope of Theorem 4.1 is actually quite broad—even if the transition
function or γ are taken as part of the reward specification, there are tasks that cannot be expressed. We
suspect there are ways to give a precise characterization of all inexpressible tasks from an axiomatic
perspective, which we hope to study in future work.

4.2 Constructive Algorithms: Task to Reward

We now analyze how to determine whether an appropriate reward function can be constructed for any
(E,T ) pair. We pose a general form of the reward-design problem [34, 51, 9] as follows.
Definition 4.1. The REWARDDESIGN problem is: Given E = (S,A, T, γ, s0), and a T , output a
reward function Ralice that ensures T is realized in M = (E,Ralice).

Indeed, for all three task types, there is an efficient algorithm for solving the reward-design problem.
Theorem 4.3. The REWARDDESIGN problem can be solved in polynomial time, for any finite E,
and any T , so long as reward functions with infinitely many outputs are considered.

Therefore, for any choice of finite CMP, E, and a SOAP, PO, or TO, we can find a reward function
that perfectly realizes the task in the given environment, if such a reward function exists. Each of
the three algorithms are based on forming a linear program that matches the constraints of the given
task type, which is why reward functions with infinitely many outputs are required. Pseudo-code
for SOAP-based reward design is presented in Algorithm 1. Intuitively, the algorithms compute the
discounted expected-state visitation distribution for a collection of policies; in the case of SOAP,
for instance, these policies include ΠG and what we call the “fringe”, the set of policies that differ
from a πg ∈ ΠG by exactly one action. Then, we use these distributions to describe linear inequality
constraints ensuring that the start-state value of the good policies are better than those of the fringe.

As highlighted by Theorem 4.1 there are SOAPs, POs, and TOs that are not realizable. Thus, it is
important to determine how the algorithms mentioned in Theorem 4.3 will handle such cases. Our
next corollary illustrates that the desirable outcome is achieved: For any E and T , the algorithms
will output a reward function that realizes T in E, or output ‘⊥’ when no such function exists.
Corollary 4.4. For any task T and environment E, deciding whether T is expressible in E is
solvable in polynomial time.

Together, Theorem 4.1 and Theorem 4.3 constitute our main results: There are environment–task
pairs in which Markov reward cannot express the chosen task for each of SOAPs, POs, and TOs.
However, there are efficient algorithms for deciding whether a task is expressible, and for constructing
the realizing reward function when it exists. We will study the use of one of these algorithms in
Section 5, but first attend to other aspects of reward’s expressivity.
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Algorithm 1 SOAP Reward Design
INPUT: E = (S,A, T, γ, s0), ΠG.
OUTPUT: R, or ⊥.

1: Πfringe = compute_fringe(ΠG)
2: for πg,i ∈ ΠG do . Compute state-visitation distributions.
3: ρg,i = compute_exp_visit(πg,i, E)

4: for πf,i ∈ Πfringe do
5: ρf,i = compute_exp_visit(πf,i, E)

6: Ceq = {} . Make Equality Constraints.
7: for πg,i ∈ ΠG do
8: Ceq.add(ρg,0(s0) ·X = ρg,i(s0) ·X)

9: Cineq = {} . Make Inequality Constraints.
10: for πf,j ∈ Πfringe do
11: Cineq.add(ρf,j(s0) ·X + ε ≤ ρg,0(s0) ·X)

12: Rout, εout = linear_programming(obj. = max ε, constraints = Cineq, Ceq) . Solve LP.

13: if εout > 0 then . Check if successful.
return Rout

14: else
return ⊥

4.3 Other Aspects of Reward’s Expressivity

We next briefly summarize other considerations about the expressivity of reward. As noted, The-
orem 4.3 requires the use of a reward function that can produce infinitely many outputs. Our next
result proves this requirement is strict for efficient reward design.
Theorem 4.5. A variant of the REWARDDESIGN problem with finite reward outputs is NP-hard.

We provide further details about the precise problem studied in Appendix B. Beyond reward functions
with finitely-many outputs, we are also interested in extensions of our results to multiple environments.
We next present a positive result indicating our algorithms can extend to the case where Alice would
like to design a reward function for a single task across multiple environments.
Proposition 4.6. For any SOAP, PO, or TO, given a finite set of CMPs, E = {E1, . . . , En}, with
shared state–action space, there exists a polynomial time algorithm that outputs one reward function
that realizes the task (when possible) in all CMPs in E .

A natural follow up question to the above result asks whether task realization is closed under a set of
CMPs. Our next result answers this question in the negative.
Theorem 4.7. Task realization is not closed under sets of CMPs with shared state-action space.
That is, there exist choices of T and E = {E1, . . . , En} such that T is realizable in each Ei ∈ E
independently, but there is not a single reward function that realizes T in all Ei ∈ E simultaneously.

Intuitively, this shows that Alice must know precisely which environment Bob will inhabit if she is
to design an appropriate reward function. Otherwise, her uncertainty over E may prevent her from
designing a realizing reward function. We foresee iterative extensions of our algorithms in which
Alice and Bob can react to one another, drawing inspiration from repeated IRL by Amin et al. [4].

5 Experiments

We next conduct experiments to shed further light on the findings of our analysis. Our focus is on
SOAPs, though we anticipate the insights extend to POs and TOs as well with little complication. In
the first experiment, we study the fraction of SOAPs that are expressible in small CMPs as we vary
aspects of the environment or task (Figure 3). In the second, we use one algorithm from Theorem 4.3
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(f) Vary the Spread of ΠG

Figure 3: The approximate fraction of SOAPs that are expressible by reward in CMPs with a handful
of states and actions, with 95% confidence intervals. In each plot, we vary a different parameter of
the environment or task to illustrate how this change impacts the expressivity of reward, showing
both equal (color) and range (grey) realization of SOAP.

to design a reward function, and contrast learning curves under a SOAP-designed reward function
compared to standard rewards. Full details about the experiments are found in Appendix C.

SOAP Expressivity. First, we estimate the fraction of SOAPs that are expressible in small envi-
ronments. For each data point, we sample 200 random SOAPs and run Algorithm 1 described by
Theorem 4.3 to determine whether each SOAP is realizable in the given CMP. We ask this question
for both the equal (color) variant of SOAP realization and the range (grey) variant. We inspect SOAP
expressivity as we vary six different characteristics of E or ΠG: The number of actions, the number
of states, the discount γ, the number of good policies in each SOAP, the Shannon entropy of T at each
(s, a) pair, and the “spread” of each SOAP. The spread approximates average edit distance among
policies in ΠG determined by randomly permuting actions of a reference policy by a coin weighted
according to the value on the x-axis. We use the same set of CMPs for each environment up to any
deviations explicitly made by the varied parameter (such as γ or entropy). Unless otherwise stated,
each CMP has four states and three actions, with a fixed but randomly chosen transition function.

Results are presented in Figure 3. We find that our theory is borne out in a number of ways. First, as
Theorem 4.1 suggests, we find SOAP expressivity is strictly less than one in nearly all cases. This
is evidence that inexpressible tasks are not only found in manufactured corner cases, but rather that
expressivity is a spectrum. We further observe—as predicted by Proposition 3.1—clear separation
between the expressivity of range-SOAP (grey) vs. equal-SOAP (color); there are many cases where
we can find a reward function that makes the good policies near optimal and better than the bad, but
cannot make those good policies all exactly optimal. Additionally, several trends emerge as we vary
the parameter of environment or task, though we note that such trends are likely specific to the choice
of CMP and may not hold in general. Perhaps the most striking trend is in Figure 3f, which shows
a decrease in expressivity as the SOAPs become more spread out. This is quite sensible: A more
spread out SOAP is likely to lead to more entailments of the kind discussed in Figure 2b.

Learning with SOAP-designed Rewards. Next, we contrast the learning performance of Q-
learning under a SOAP-designed reward function (visualized in Figure 4a) with that of the regular
goal-based reward in the Russell and Norvig [42] grid world. In this domain, there is 0.35 slip
probability such that, on a ‘slip’ event, the agent randomly applies one of the two orthogonal action
effects. The regular goal-based reward function provides +1 when the agent enters the terminal flag
cell, and −1 when the agent enters the terminal fire cell. The bottom left state is the start-state, and
the black cell is an impassable wall.
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Figure 4: A SOAP-designed reward function (left) and the resulting learning curves (right) for Q-
learning compared to the traditional reward function for the Russell and Norvig [42] grid world. Each
series presents average performance over 50 runs of the experiment with 95% confidence intervals.

Results are presented in Figure 4. On the right, we present a particular kind of learning curve
contrasting the performance of Q-learning with the SOAP reward (blue) and regular reward (green).
The y-axis measures, at the end of each episode, the average (inverse) minimum edit distance
between Q-learning’s greedy policy and any policy in the SOAP. Thus, when the series reaches 1.0,
Q-learning’s greedy policy is identical to one of the two SOAP policies. We first find that Q-learning
is able to quickly learn a πg ∈ ΠG under the designed reward function. We further observe that the
typical reward does not induce a perfect match in policy—at convergence, the green curve hovers
slightly below the blue, indicating that the default reward function is incentivizing different policies to
be optimal. This is entirely sensible, as the two SOAP policies are extremely cautious around the fire;
they choose the orthogonal (and thus, safe) action in fire-adjacent states, relying on slip probability
to progress. Lastly, as expected given the amount of knowledge contained in the SOAP, the SOAP
reward function allows Q-learning to rapidly identify a good policy compared to the typical reward.

6 Conclusion

We have here investigated the expressivity of Markov reward, framed around three new accounts
of task. Our main results show that there exist choices of task and environment in which Markov
reward cannot express the chosen task, but there are efficient algorithms that decide whether a task is
expressible and construct a reward function that captures the task when such a function exists. We
conclude with an empirical examination of our analysis, corroborating the findings of our theory. We
take these to be first steps toward understanding the full scope of the reward hypothesis.

There are many routes forward. A key direction moves beyond the task types we study here, and
relaxes our core assumptions—the environment might not be a finite CMP, Alice may not know
the environment precisely, reward may be a function of history, or Alice may not know how Bob
represents state. Along similar lines, a critical direction incorporates how reward impacts Bob’s
learning dynamics rather than start-state value. Further, we note the potential relevance to the recent
reward-is-enough hypothesis proposed by Silver et al. [44]; we foresee pathways to extend our
analysis to examine this newer hypothesis, too. For instance, in future work, it is important to assess
whether reward is capable of inducing the right kinds of attributes of cognition, not just behavior.
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A Anticipated Questions

We first address questions that might arise in response to the main text.

(Q1) What does it mean for Bob to *solve* one of these tasks? That is, if Alice chooses a SOAP,
PO, or TO for Bob to learn to solve, when can Alice determine Bob has solved the task?
A: Bob can be said to be doing better on a given task if his behavior improves, as is typical
in evaluating behavior under reward. The difference with SOAPs, POs, and TOs is that we
measure improvement relative to the task rather than reward. For instance, given a SOAP,
we might say that Bob has solved the task once he has found one of the good policies, and
we might measure Bob’s progress on a task in terms of the distance of his greedy policy to
one of the good policies (as done in our learning experiments). The same reasoning applies
to POs and TOs: Bob is doing better on a task in so far as his greedy policy (or trajectories)
is (are) higher up the ordering.

(Q2) These notions of inexpressibility all come about due to the Markov restriction on reward
functions. That is, the studied reward functions must be a function of s, (s, a), or (s, a, s′).
But, what about history-based reward functions?
A: Indeed, as discussed in our introduction, our goal is to examine the expressivity of
Markov rewards in the context of finite MDPs. We assume the environment is fixed and
given to Alice with the state and action spaces already determined. While it is sensible to
consider history-based rewards, this opens up new considerations: Must the state space also
change so as to retain the Markov property? Instead, we suggest that for a given CMP, it
is natural to be interested in Markov rewards, but acknowledge the importance of going
beyond such functions. As discussed in the main text, we suspect that there is a coherent
account of which tasks are and are not expressible as a consequence of some of the axioms
for rationality. We hope to study these directions in future work.
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(Q3) Why restrict attention to SOAPs, POs, and TOs?
A: First, we recognize these do not necessarily capture all of what we hope to convey to
learning agents. It is an important next step in our work to enrich the analysis with more
general objectives. Still, we believe that these each represent an interesting, relatively
general, and concrete template for what a task might look like. They are quite flexible:
SOAPs can be simple while POs and TOs can be complex.

(Q4) Why restrict to the start-state value?
A: We adopt start-state value due to its simplicity. Other considerations might be: (1) The
expected value under some chosen distribution, or (2) That the constraint hold over all states
(so, for SOAPs, each πg is better than each πb in value for all states). We note that the
former case is identical to start-state value, as we can always add a start-state to any CMP
where all actions lead to the desired next-state distribution in T . The latter case is slightly
more complicated, so we chose not to focus on it as we prefer the simplicity of the start-state
case. However, we note that many inexpressible tasks under the start-state criterion remain
inexpressible under the “all-state” criterion (such as the XOR example from Figure 2b).

B Proofs

We next restate each central result, and present its proof.
Proposition 3.1. There exists a CMP, E, and choice of ΠG such that ΠG can be realized under the
range-SOAP criterion, but cannot be realized under the equal-SOAP criterion.

s0 s1
a1

a1

a2 a2
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Figure 5: A CMP that separates the two kinds of SOAP realizations.

Proof of Proposition 3.1.

Consider the example in Figure 5 and the SOAP ΠG = {π11, π21, π12}. This ΠG indicates
that all policies are acceptable except the policy that always takes a2. That is, the policy
subscripts denote which actions each policy takes in each state (π12 means a1 in s0, a2 in s1).

First, let us note that range-SOAP is realizable: The listed rewards allow for each policy in
ΠG to obtain RMAX/2

1−γ value or better, while π22 achieves zero. Letting ε = VMAX/2, this
choice of rewards satisfies the criteria, and the ΠG is ε-realized in the given MDP.

Next, note that there can exist no other choice of rewards that realize the equal-SOAP. That
is, such that V π11(s0) = V π12(s0) = V π21(s0) > V π22(s0). This fact is a consequence of
the tie in values between the policies. Here, we see that any choice of rewards that makes
V π12(s0) = V π21(s0) will also give π22 that same value. Thus, the given ΠG is unrealizable
under equal-SOAP.

Theorem 4.1. For each of SOAP, PO, and TO, there exist (E,T ) pairs for which no reward function
realizes T in E.

Proof of Theorem 4.1.
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We proceed by proving the existence of a pair (E,T ), for each of T as a SOAP, PO, or TO.
Indeed, we find that the simple XOR case is inexpressible for all three task types.

SOAP. For SOAP, we consider the CMP with two states and two actions from Figure 5, and
the SOAP ΠG = {π12, π21}. That is, the chosen task is for the learning agent to find a policy
that chooses each action in exactly one state. Here, we find that any Markov reward function
that makes a1 optimal in the left state will, by consequence, make a1 an optimal action no
matter what is done in other states. In other words, we cannot assign rewards to (s, a) pairs
so that an action’s optimality depends on which optimal action is taken in the other state.
Thus, all choices of Markov reward function that make {π12, π21} optimal will also make
{π11, π22} optimal, too.

PO. Since the given SOAP is a special case of a PO, we have already identified a given
inexpressible PO.

TO. For TO, for simplicity we consider the same CMP. We let N = 2, and suppose that the
desired trajectory ordering is over state-action pairs, giving rise to a set of good trajectories,
and a set of bad trajectories:

Lτ,N := {τG, τB}, (B.1)
τG = {{(s0, a1), (s1, a2)}, {(s0, a2), (s1, a1)}} , (B.2)
τB = {{(s0, a1), (s1, a1)}, {(s0, a2), (s1, a2)}} . (B.3)

The same reasoning from the above cases applies: We cannot make the good trajectories
strictly higher in return than the bad trajectories.

Proposition 4.2. There exist choices of E¬T = (S,A, γ, s0) or E¬γ = (S,A, T, s0), together with
a task T , such that there is no (T,R) pair that realizes T in E¬T or (R, γ) in E¬γ .

Proof of Proposition 4.2.

The running XOR example is actually inexpressible for all choices of T , or of γ. That is, there
is no way to make π12 and π21 strictly better than both π22 and π11 by varying γ or T . Such
examples likely exist for any choice of S and A of size greater than one.

Theorem 4.3. The REWARDDESIGN problem can be solved in polynomial time, for any finite E,
and any SOAP, PO, or TO, so long as a reward-function family with infinitely many outputs is used.

Proof of Theorem 4.3.

We proceed by providing constructive algorithms for each of SOAP, PO, or TO. All three are
based on similar applications of a linear program (LP), though there is nuance that separates
them. We present each as a Lemma (Lemma B.1, Lemma B.2, Lemma B.3), which together
constitute the proof of this Theorem.

Lemma B.1. The SOAP variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.1.

We proceed by constructing a linear program (LP) whose solution is the desired reward
function (or correctly outputs that there is no such reward function). Specifically, note that we
want to choose a reward function so that all the policies in ΠG have strictly higher start-state
value than all the policies not in the set. We present the proof through five observations.
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First, observe that any reward function that will induce the desired ordering ensures that the
optimal policy π∗ is in the set ΠG. This is true since π∗ (under the chosen reward function) is
better than all policies. So it is better than all policies not in ΠG.

Second, note that the set ΠG is well connected in the following sense. Let a step in policy
space from some reference policy πref to be a move to any other deterministic policy that
differs from πref in exactly one state. Then, for any pair of policies in ΠG, there must be a
sequence of policies in ΠG, each one step apart from the next, from one to the other. This
follows from the policy-improvement theorem: we can get from any policy to an optimal
policy in a sequence of policies such that each policy (1) is one step from the previous one
and (2) strictly dominates the previous one. Since any policy that strictly dominates a policy
in ΠG must be better than the policy in ΠG, it must also be in ΠG (if the problem constraint
is satisfied). That means if we choose two policies in ΠG, π1 and π2, both can reach π∗ in a
sequence of single steps while staying within ΠG. Since steps are symmetric, ΠG is connected.
The connected set of policies in ΠG has a “fringe” Πfringe—a set of policies not in ΠG that are
one step from a policy in ΠG.

Third, for the constraints of the problem to be satisfied, every policy πg ∈ ΠG must be
strictly better than every policy πf ∈ Πfringe.

Fourth, observe that |Πfringe| <= |A||ΠG|, so Πfringe is polynomial sized.

Fifth, we can construct a polynomial-sized LP that expresses that every policy πg ∈ ΠG is
strictly better than every policy πf ∈ Πfringe. Note that the direct way to build this LP has a
“strictly better than” comparison between each policy πf ∈ Πfringe and each policy π ∈ ΠG.
That’s at most |A||ΠG|2 inequalities.

We now tie the above observations together to show that the solution to this LP solves the
constraints of the problem. That is, the reward function returned makes it so every policy
πg ∈ ΠG is strictly better than every policy not in ΠG, and no valid reward function is
excluded (so, if a solution exists, it will be found).

The argument that no valid reward function is excluded is simply because the set of constraints
in the LP is a subset of the defining constraints of the problem. Specifically, the LP constrains
the policies inside ΠG to be strictly better than the ones on the fringe instead of all policies
not in ΠG.

The argument that only constraining the values on the fringe automatically constrains all the
others proceeds as follows. First, with respect to the returned reward function, there is some
optimal policy π∗. That policy π∗ must be in ΠG. To see why, let us assume it is not. That
means there is a sequence of improving steps that turn a policy in ΠG to π∗ (currently assumed
to be out of ΠG). But, any such sequence must go through the fringe, and we constrained the
fringe so that all of the policies in ΠG are strictly better than them. So, π∗ must be in ΠG.
Next, we know that all policies in ΠG must be strictly better than the policies not in ΠG. To
see why, consider an “improving” path from some policy πb 6∈ ΠG to π∗. Since π∗ is in ΠG,
we know this path must go through some policy πf ∈ Πfringe. Since it’s an improving path,
that means πf is better than πb. But, every policy in ΠG is strictly better than πf , so it must
also be strictly better than πb.

Lemma B.2. The PO variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.2.

We proceed by constructing a procedure that calls a linear program whose answer is the reward
function that induces the given LΠ in M , or the procedure correctly outputs that there is no
such R.
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Consider the set of policies in Π, numbered π1, . . . , πi, . . . , πN . Note that the value of πi in
s0 can be computed in terms of the expected reward under the policy’s discounted expected
state-action visitation distribution. That is, for each πi, let

ρi(s, a) :=

∞∑
t=0

γt Pr(st = s, at = a | s0, πi). (B.4)

Since the given MDP is assumed to have finite state-action space, note that ρi may be
interpreted as a vector whose elements correspond to ρi(s0, a0), ρi(s0, a1), and so on.

The value of πi under a given reward function R (which may also be interpreted as a vector)
is then produced by the dot product R · ρi.
Given LΠ, we want to find an R that ensures a set of linear constraints hold:

R · ρ0 ≥ R · ρ1 ≥ . . . . (B.5)

Note that the trivial reward function, R∅ : s 7→ 0, is a solution to the above linear program.
However, we can ensure some minimal increment improvement of ε for non-tying policies,
where

R · ρ0 ≥ R · ρ1 + ε ≥ . . . . (B.6)
This ε minimal increment is sufficient to separate policies with tying scores and avoids the
degenerate solution of R∅, so long as there are infinitely many reward outputs feasible.

Note that the input is of size N , where N is the number of constraints imposed on the policy
ordering. In the worst case, N = |LΠ| ≤ |A||S|. If there are fewer constraints than either |A|
or |S|, then N = max{|S|, |A|}. The amount of computational work required is split across
two steps:

1. Õ(N): Compute ρi for each policy π1 . . . πN .

2. O(N3): Formulate and solve the above linear program.

Thus, since the described linear program can be constructed in polynomial time outputs a
reward function that induces the given LΠ, we conclude the PO case.

Lemma B.3. The TO variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.3.

The algorithm follows the same construction as those catered toward SOAPs and POs, but is
in fact much simpler.

We can form linear inequality constraints on the return of two trajectories as follows. First
recall that the N -step discounted return of a trajectory τ is

G(τ ; s0) =

N−1∑
i=0

γiR(si, ai), (B.7)

assuming reward is a function of state and action for simplicity. Note that because reward
functions are assumed to be deterministic, the quantity G(τ ; s0) is not a random variable.

Now, given two trajectories,

τi = {(s(i)
0 , a

(i)
0 ), . . . , (s

(i)
N−1, a

(i)
N−1)}, τj = {(s(j)

0 , a
(j)
0 ), . . . , (s

(j)
N−1, a

(j)
N−1)}, (B.8)

note that we can express linear inequality constraints as follows,

τi ·R− τj ·R ≤ ε, (B.9)
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where R is a length N state-action vector, and ε ∈ Q≥0 is a slack variable to be maximized as
part of the optimization. Inequality constraints follow the same structure, only simpler. By
the same reasoning that underlies the construction of the SOAP and PO based algorithms,
the above set of constraints define a linear program whose solution is the realizing reward
function, if it exists.

Corollary 4.4. For any task T and environment E, deciding whether T is expressible in E is
solvable in polynomial time

Proof of Corollary 4.4.

For each of PO and TO, the constraints we construct define precisely the space of constraints
that constitute the given task. Thus, since linear programming will find a solution for the given
constraint set, we know that these two forms of the algorithm will also correctly decide when
no reward function exists.

The SOAP case is slightly more involved, but still relatively straightforward. We note that the
policy fringe, Πfringe, is a subset of ΠB , since Πfringe consists of some policies not in ΠG by
construction. This means that the constraints produced that separate each good policy from a
fringe policy in value are a subset of the true constraints (those that separate each πg ∈ ΠG

from each πb ∈ ΠB). Hence, since constraint relaxations of this kind have the property that
they do not exclude solutions, we conclude that our proposed linear program will correctly
determine when no satisfying reward function exists.

Next, we provide further details on Theorem 4.5 that examines reward design when only finitely
many reward outputs may be used. As noted in the main text, Theorem 4.3 requires that Alice is
allowed to design a reward function that can produce infinitely many outputs. It is natural to wonder
whether this requirement is strict. Theorem 4.5 answers this question in the affirmative, by proving
that the following decision problem is hard.
Definition B.1. The FINITE-PO-REWARDDECISION problem is defined as follows: Given E =
(S,A, T, γ, s0), and a set of k policy inequalities (πxi

< πyi), output True iff there is a reward
function R(s′) that induces the given policy inequalities.

Note that this formulation focuses on POs, and on reward as a function of next-state. Unfortunately,
we find this problem is NP-hard, showing that for reward design to be efficient, infinitely many reward
outputs are needed.
Theorem 4.5. The FINITE-PO-REWARDDECISION problem is NP-hard.

Proof of Theorem 4.5.

We assume every T (s′ | s, a) is expressed as a rational number. We also assume that all
policies are deterministic, Markov policies, although results should extend to stochastic
policies with rational probabilities as well.

The binary PO problem is the same, but it insists that every R(s′) ∈ {0, 1} for all s′ in the
returned reward function.

Observation 1: The binary PO decision problem is in NP. We can guess an assignment of
R(s, a) to either 0 or 1, then evaluate in inequality using linear equation solving as policy
evaluation.

We show that the binary PO decision problem can be used to decide the NP-hard monotone
clause 3-SAT problem with a polynomial reduction.

A monotone clause 3-SAT problem consists of a set of n variables, andm clauses. Each clause
consists of three variables and is either a positive clause or a negative clause. In a positive
clause, all three variables appear as literals. In a negative clause, all three variables appear
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as negated literals. The problem is the same as the standard 3-SAT problem except for the
restriction that we cannot mix positive and negative literals in a clause.

We can convert an instance of monotone clause 3-SAT to the binary PO problem as follows.
There is only one state where decisions are possible. It is the initial state of the MDP. Each
action from this state results in an action-specific probabilistic transition to a set of terminal
states, each of which is associated with a terminal reward value.

Because of the simple structure of this MDP, each policy corresponds to an action and vice
versa. And, each terminal state corresponds to a reward and vice versa. So, each policy can be
viewed as a convex combination of rewards.

We create two terminal states s0 and s1 and create one action (a0) that transitions directly to
s0 and one (a1) that transitions directly to s1. We then add a policy constraint that says the
a0 < a1. Because all rewards are in {0, 1}, that forces the reward for s0 to be 0 and for s1 to
be 1. Those become our logical primitives, in a sense.

Next, we add 2n states, one for each positive and negative literal in the 3-SAT problem. For
each variable v, we add an action av with a 50-50 transition to sv and sv, along with two
constraints: a0 < av < a1. These constraints ensure that the reward assignment to sv and sv
can be interpreted as an assignment to the literals where one gets a 1 and the other gets a zero.
There is no other way to satisfy these constraints.

Now, for each positive clause c consisting of variables v1, v2, and v3, we create an action ac
that transitions to sv1 , sv2 , and sv3 with equal probability. We add a policy constraint that
ac > a0, forcing the assignment of rewards to the variables to correspond to a satisfying
assignment for that clause. (At least one of the rewards needs to be set to 1.)

For the each negative clause c consisting of variables v1, v2, and v3, we create an action ac
that transitions to sv1 , sv2 , and sv3 with equal probability. We add a policy constraint that
ac < a1, forcing the assignment of rewards to the variables to correspond to a satisfying
assignment for that clause. (At least one of the rewards needs to be set to 0.)

By the way the MDP is constructed, the constraints are satisfied if and only if the rewards
represent a satisfying assignments for the given monotone clause 3-SAT formula. Therefore,
an efficient solution to the binary PO decision problem would provide an efficient solution to
the NP-hard monotone clause 3-SAT problem.

Proposition 4.6. For any SOAP, PO, or TO, given a finite set of CMPs E = {E1, . . . , En} with
shared state–action space, there exists a polynomial time algorithm that outputs a single reward
function that realizes the task (when possible) in each CMP in E .

Proof of Proposition 4.6.

From Theorem 4.3, we know that there is an algorithm to solve the reward design problem
for any task and a single environment, in polynomial time. We form the multi-environment
algorithm by simply combining the constraints formed by each individual linear program. By
the properties of linear programming, the resulting solution will either satisfy all of the given
constraints, as desired, or will correctly identify that no such satisficing solution exists.

Theorem 4.7. Task realization is not closed under sets of CMPs with shared state-action space.
That is, there exist choices of T and E = {E1, . . . , En} such that T is realizable in each Ei ∈ E
independently, but there is not a single reward function that realizes T in all Ei ∈ E simultaneously.

Proof of Theorem 4.7.

We consider a pair of CMPs, (EX , EY ), with the same three states and two actions. We will
show that there exists choice of T such that T is realizable in EX and EY independently,
but not in both simultaneously. Our result assumes we restrict to reward functions that are
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only a function of state, but we suspect similar cases exist for reward functions on (s, a) pairs
and (s, a, s′) triples.

Consider the pair of CMPs in Figure 6. These two CMPs share a state-action space and
start-state, but not a transition function (and, say, a γ > 0.5). Let us further suppose we are
interested in the SOAP ΠG = {π112, π212}, that is, the policies that take a1 in s1, and a2 in
s2. In both CMPs, the transition function from s0 transitions to s1 with probability 0.5 and s2

with probability 0.5, for both actions.

We first show that this ΠG is realizable in both CMPs. For the CMP on the left, note that the
reward function R(s1) = 1, R(s2) = −1, with γ = 0.95 will ensure V π112(s0) = V π212(s0),
and that both policies are strictly better than all others. Next, note that the same is true for the
example on the right where R(s1) = −1, R(s2) = 1. Thus, ΠG is independently realizable in
both of these CMPs.

However, there cannot exist a reward function that makes π112 and π212 strictly better than all
other policies in both CMPs—it is either better to stay in s1, or to stay in s2, but it cannot be
the case that both are true simultaneously.

s1 s2
a1a1

a2

a2 s1 s2
a2a2

a1

a1

s0

a2a1

s0

a2a1

Figure 6: A pair of CMPs with opposite action effects: On the left, a1 keeps the agent in the same
place, while a2 flips the state. On the right, the effects are exactly inverted.

C Experimental Details

Next, we provide further details about our experiments.

C.1 Expressibility Experiments

First, we provide additional information about the first experiment that explores the fraction of SOAPs
that are expressible in small CMPs.

Six Variants. In each figure, we vary one aspect of the environment or task along the x-axis. Most
of these are self-explanatory (a: number of actions, b: number of states, c: γ), though the plots in (d),
(e) and (f) are slightly more involved. In (d), we vary the size of each sampled SOAP, corresponding
to the number of good policies in the SOAP. That is, a SOAP of size one consists only of a single
good policy, ΠG = {π∗}. In (e), we vary the Shannon entropy of the transition function on a per
state-action basis as per: H(T ) = −

∑
s′∈S log2 T (s′ | s, a). This is accomplished by interpolating

between the fully deterministic transition function that only transitions to a single next-state and the
uniform random transition function through a simple soft-max distribution in which one next-state
is the intended transition, while each other next-state receives a small amount of probability mass
depending on the given entropy. In plot (f), we vary the spread of the SOAP, which is a measure of
how different the good policies in the SOAP are on average. The x-axis corresponds to an approximate
edit-distance between policies, where each point on the x-axis defines the parameter of a coin that we
flip to determine whether to change a chosen reference policy’s action for each state. So, we first
randomly sample one policy, say π1. Then, we construct the next policy for the SOAP as follows:
For a given coin weight θ, we flip a coin at each state of the CMP. If the coin lands heads (the trial
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is successful), then we change the action of the new policy to a fixed action chosen uniformly at
random. Thus, when θ is zero, the SOAP will only contain π1. When θ approaches one, the SOAP
will likely contain many different policies.

Environment Details. In each case, unless otherwise specified, the underlying environment is a
four state, three action CMP with γ = 0.95, and a transition function that is a multinomial over
next-states sampled from a Dirichilet-multinomial distribution with α parameters set to 1

|S| . When
not specified, the size of each SOAP is two. We varied many aspects of these parameters and found
little change in the nature of the plots, though trends will be shifted up or down in many cases. For
instance, given the downward trend of Figure (3d) as the SOAP size increases, we know that the
remaining plots will each be scaled downward if we were to run the same experiment for a SOAP
size larger than two. We sample random SOAPs by first sampling a SOAP size randomly between
1 and |Π|. Then, we sample N SOAPS of the chosen size uniformly at random (unless otherwise
specified, as in the case of Figure (3f)).

C.2 Learning Experiments

In the grid environment, we set slip probability of 0.35 for all (non-terminal) states. When a “slip”
event occurs, the action effect is orthogonal to the intended direction. For instance, in the bottom left
cell, if the up action is executed, there is a 0.175 chance the agent will execute left (thus staying in
the bottom right cell), and a 0.175 chance the agent will execute right, and a 0.65 chance the agent
will move up a cell. We experiment with tabular Q-learning with ε-greedy exploration, with ε = 0.2
and learning rate α = 0.1 and no annealing. Each episode consists of 10 steps in the environment,
with 250 episodes per algorithm. We repeat the experiment 50 times and report 95% confidence
intervals. The y-axis measures, at the end of each episode, the (inverse) minimum edit distance
between Q-learning’s greedy policy and any of the policies in the SOAP along the trajectory taken by
Q-learning’s greedy policy. Thus, when the series reaches 1.0, Q-learning’s greedy policy is identical
to one of the SOAP policies in the states that the greedy policy will reach. We observe that the gap
between the blue and green curves is due to the different kinds of policies that the SOAP reward and
the regular reward promote—one is not necessarily better or worse than the other, they just convey
different kinds of objectives.
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