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We here include proofs of the introduced theorems and lemmas and provide further discussion about extensions to
more general settings.

Proofs
We begin with the two central Lemmas, which serve as the main deductive steps for the proof of Theorem 2.

Lemma 1. Consider a discrete random variable X , with alphabet X and some pmf p(x). For a given threshold
δmin ∈ (0, 1), the pmf-used alphabet size of the alphabet is bounded:

|X |δminp(x) ≤
H(X)

δmin log
(

1
δmin

) . (18)

Proof. Recall the entropy of a random variable H(X):

H(X) := −
∑
x∈X

p(x) log2 p(x). (19)

Then, for a given maximum entropy H(X) ≤ N , we seek to understand the largest possible |X |δminp(x) . That is:

max
p(x):H(X)≤N

|X |δminp(x) . (20)

Note that this is maximized at the uniform distribution, where each element has δmin probability, across the largest
alphabet such that H(X) = N :

H(X) = −
∑
x∈X

p(x) log2 p(x) (21)

= −
∑
x∈X

δmin log2 δmin (22)

= −|X |δmin log2 δmin (23)

= |X |δmin log2

1

δmin
. (24)
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Therefore, for a given pmf p(x) with entropy H(X), and a minimum threshold of probability, the minimum size of
the alphabet X is upper bounded:

|X | ≤ H(X)

δmin log2
1

δmin

.

Lemma 2. Consider two stochastic policies, π1 and π2 on state space S, and a fixed probability distribution over S,
p(s). If, for some k ∈ R≥0:

E
p(s)

[DKL(π1(a | s) || π2(a | s))] ≤ k, (25)

then:
E
p(s)

[V π1(s)− V π2(s)] ≤
√

2kVMAX. (26)

Proof. Recall the total variation distance (TVD) between our two policies for a given state s is defined as:

TV (πE , πφ) := sup
a∈A
|πE(a | s)− πφ(a | s)|. (27)

Furthermore, recall that TVD relates to the L1 norm and the KL divergence:

TV (πE , πφ) =
1

2

∑
a∈A
|πE(a)− πφ(a)| ≤

√
1

2
DKL(πE || πφ), (28)

where the inequality in Equation 28 is formally known as Pinsker’s inequality. With this inequality in place, we expand
the expectation in the value bound:

Ep(s)[V πE (s)− V πφ(s)] (29)

≤
∑
s

p(s)

(∑
a

|πE(a | s)− πφ(a | s)|(R(s, a) + γ
∑
s′

T (s, a, s′)|V πE (s′)− V πφ(s′)|

)

=
∑
s

∑
a

p(s)|πE(a | s)− πφ(a | s)|

(
R(s, a) + γ

∑
s′

T (s, a, s′)|V πE (s′)− V πφ(s′)|

)

Then, applying the upper bound on the possible value VMAX = RMAX/(1− γ) to Equation 29:

Ep(s)[V πE (s)− V πφ(s)] ≤ VMAX Ep(s) [|πE(a | s)− πφ(a | s)|] . (30)

Then, by Pinsker’s inequality, we conclude:

Ep(s)[V πE (s)− V πφ(s)] ≤ 2VMAX Ep(s)

[√
1

2
DKL(πE(a | s) || πφ(a | s))

]
(31)

≤
√

2kVMAX

With these two Lemmas in place, we now prove our main Theorem.

Theorem 2. A function f of the DIB objective ĴDIB is an upper bound for the CVA Objective, J , where state space
size is treated as |Sφ|δminρφ(s)

:

∀φ : J [φ] ≤ f
(
ĴDIB[φ]

)
. (32)
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Proof. With Lemma 1 and Lemma 2, the proof is straightforward. Consider the φ that minimizes ĴDIB, yielding the
value of at most N + βk, where:

N := H(Sφ) (33)
k := E

s∼ρE
[DKL(πE(a | s) || πφ(a | φ(s))] . (34)

Then, by Lemma 1, we know:

|Sφ|δminρφ(s)
≤ N

δmin log2
1

δmin

. (35)

By Lemma 2, we know:
Eρ(s) [V πE (s)− V πφ(s)] ≤

√
2kVMAX. (36)

Therefore, since both quantities are non-negative, we conclude:

J [φ] = |Sφ|δminρφ(s)
+ βEρ(s) [V πE (s)− V πφ(s)] (37)

≤ N

δmin log2
1

δmin

+ β
√

2kVMAX. (38)

Thus, we can upper bound the quantities in J as a function of the quantities in ĴDIB.

Extensions
The results we present in this work offer a first step toward understanding state abstraction as compression in sequential
decision making. Looking forward, we hope to extend this work into a general abstraction-as-compression learning
paradigm for RL. To this end, we introduce two concrete avenues for extending the work to more general settings.

Agent Has Control
Relaxing the assumption that πE controls the MDP is essential for extending this work to traditional RL. We here
propose a path toward removing this restriction by focusing on an intermediate goal: define an algorithm with the
same properties as DIBS, but with the learning agent’s non-stationary policy controlling the underlying MDP instead
of πE . Ultimately, we seek an algorithm that, after T < ∞ iterations, can produce an abstraction–policy pair such
that, for some state distribution p(s):

Ep(s)
[
V d(s)− V π

T
φ (s)

]
≤ f(β, T ). (39)

The most challenging aspect of this setup is that the source distribution is no longer fixed, since the agent’s policy
will change over time as the agent learns and updates both φ and πφ. To this end, we prove the following result that
suggests a route to defining a convergent algorithm for the case where the agent controls the MDP.

Lemma 3. Given two policies π1 and π2, if:

sup
s

∑
a

|π1(a | s)− π2(a | s)| ≤ ∆, (40)

then: ∑
s

|ρπ1,s0(s)− ρπ2,s0(s)| ≤ ∆γ

1− γ
, (41)

where ρπ,s0 denotes the stationary distribution over states under π, starting in state s0.
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Proof. We first bound the difference between the two state distributions after t steps:∑
s′

|ρtπ1,s0(s′)− ρtπ2,s0(s′)|

=
∑
s′

|p(st = s′|s0, π1)− p(st = s′|s0, π2)|

=
∑
s′

|
∑
s

p(st−1 = s | s0, π1)
∑
a

π1(a | s)p(s′ | s, a)

−
∑
s

p(st−1 = s | s0, π2)
∑
a

π2(a | s)p(s′ | s, a)|

≤
∑
s′

|
∑
s

p(st−1 = s | s0, π1)
∑
a

(
π1(a | s)− π2(a | s)

)
p(s′ | s, a)|

+
∑
s′

|
∑
s

(
p(st−1 = s | s0, π1)− p(st−1 = s | s0, π2)

)∑
a

π2(a | s)p(s′ | s, a)|

≤
∑
s

p(st−1 = s | s0, π1)
∑
a

∣∣∣π1(a | s)− π2(a | s)
∣∣∣∑
s′

p(s′ | s, a)

+
∑
s

∣∣∣p(st−1 = s | s0, π1)− p(st−1 = s | s0, π2)
∣∣∣∑
a

π2(a | s)
∑
s′

p(s′ | s, a)

≤ ∆ +
∑
s

∣∣∣p(st−1 = s | s0, π1)− p(st−1 = s | s0, π2)
∣∣∣

= ∆ +
∑
s′

|ρt−1π1,s0(s′)− ρt−1π2,s0(s′)|

From the above bound, and using induction, we have:∑
s′

|ρtπ1,s0(s′)− ρtπ2,s0(s′)| ≤ t∆

∑
s

|ρπ1,s0(s)− ρπ2,s0(s)|

=
∑
s

|(1− γ)
∑
t

γtρtπ1,s0(s)− (1− γ)
∑
t

γtρtπ2,s0(s)|

≤ (1− γ)
∑
t

γt
∑
s

|ρtπ1,s0(s)− ρtπ2,s0(s)|

≤ (1− γ)
∑
t

γtt∆ = (1− γ)
γ∆

(1− γ)2
=

γ∆

1− γ

Corollary 1. As a simple corollary of Proposition 1 we get:

|V π1(s)− V π2(s)| = |
∑
t

∑
s

ρtπ1,s0(s)R(s)−
∑
t

∑
s

ρtπ2,s0(s)R(s)|

≤ RMAX
∑
t

(1− γ)
∑
s

|ρtπ1,s0(s)− ρtπ2,s0(s)|

≤ RMAX(1− γ)
∑
t

∆γtt

= RMAX
γ∆

1− γ
= ∆γVMAX
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Figure 1: The value of the abstract policy found by Agent Controlled DIBSfor values of β between 0 and 4. The line
indicates the average over 100 trials, with 95% confidence intervals.

The above Lemma suggests that two policies that deviate by a bounded amount are guaranteed to share similar
stationary distributions. So, with the right intermediate updates that encourage the abstract policy to mimic πE more
faithfully, we can construct a convergent algorithm for the agent-in-control setting.

We offer an initial variant of this algorithm, which we called agent-controlled DIBS (AC-DIBS). We conduct a Four
Rooms experiment similar to that of the previous section. Here, we now run the entire process of DIBS for T rounds,
each time to convergence, but letting the agent’s initial policy for that round define the stationary state distribution.
Results are presented in Figure 1. Surprisingly, we find AC-DIBS always converges quickly to a point where ρTφ is
sufficiently close to ρE , when β > 1. This finding supports our supposition, along with Lemma 3, there is a route to
defining a convergent form of DIBSwhen the agent’s policy controls the underlying MDP.

Multiple MDPs
Second, we use our framework to compute a single abstraction sufficient for representing the demonstrator policy
across different, but potentially related tasks. We suppose we are given a set of MDPs M , each sharing a state and
action space, but are allowed to vary in T , R, and γ. We conduct an experiment in which |M | = 4, each with a
goal in one of the four corners of the world. We run DIBS for each MDP in M , for a fixed β, and form a master
abstraction φM by taking the intersection across each computed state abstraction. That is, for any state pair (s1, s2),
for φi computed by DIBS on each MDP, we define φM :

φM (s1) = φM (s2) ≡
|M |∧
i=1

{φi(s1) = φi(s2)}. (42)

Figure 2 shows φM for different values of β. All cells with the same color are grouped into the same state, except
for white: all white states are each treated as their true ground state. Note that the abstraction becomes far more
detailed as β increases: when β is close to 0, the algorithm prioritizes compression, as is reflected by Figure 2a, which
only has a single state. Conversely, as β increases, we find the algorithm adds more distinctions between states, only
grouping those that are close to one another or the near the same wall. When β = 1, we find that the abstraction groups
the top and bottom hallways together, and the left and right hallways together. Similarly, it groups large regions of
contiguous states together, such as the central group of states in the bottom right room, and the right most states in the
top right room. When β = 10, we find less compression, but still find contiguous regions that have some structural
similarities. For instance, the dark blue regions extending above and below the left and right doorways are grouped
together, as across all four goals it is important to move up and down between the rooms. The orange groups in the top
left and bottom right rooms suggest a similar structure for moving left and right. Critically, none of the abstractions
are perfect: we do not know what constitutes the optimal abstraction in the case, nor how well our proposed algorithm
approximates this optimal. In future work we hope to bring clarifying answers to these questions.
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(a) β = 0 (b) β = 1 Beta = 10 (c) β = 10

Figure 2: State abstractions computed by DIBS for a collection of MDPs for different values of β.

Lastly, we briefly discuss the variational upper bound introduced as part of our VAE extension. In Equation 14, we
reference a known result relating the KL-divergence to mutual information in the context of variational autoencoders
(VAEs) Kingma and Welling (2013). Recall that a VAE is concerned with learning a probabilistic encoder-decoder
pair, qψ(z|x) and pθ(x | z) respectively, for compressing raw data into a latent representation and then reconstructing
the original input. During the course of training a VAE via the evidence lower bound objective (ELBO), the KL-
divergence between qψ(z|x) and some prior distribution over latent codes, p(z), is minimized in expectation over the
data distribution, p(x); that is, Ep(x)[DKL(qψ(z | x) || p(z))] is minimized.

To define our variational upper bound to Ĵ (the stochastic IB objective for state abstraction), we leverage a known
result Makhzani and Frey (2017); Kim and Mnih (2018); Dupont (2018) whose proof we replicate here for complete-
ness with q(z, x) = p(x)qψ(z|x) and q(z) = Ep(x)[qψ(z|x)]:

Ep(x)[DKL(qψ(z | x) || p(z))] = Ep(x)
[
Eqψ(z|x)[log

qψ(z|x)

p(z)
]

]
= Eq(z,x)

[
log

(
qψ(z | x)

p(z)

q(z)

q(z)

)]
= Eq(z,x)

[
log

qψ(z | x)

q(z)

]
+ Eq(z,x)

[
log

q(z)

p(z)

]
= Eq(z,x)

[
log

q(z, x)

q(z)p(x)

]
+ Eq(z)

[
log

q(z)

p(z)

]
= I(X;Z) +DKL(q(z) || p(z))
≥ I(X;Z)
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