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Abstract of “Concepts in Bounded Rationality: Perspectives from Reinforcement

Learning”, by David Abel, A.M., Brown University, May 2019.

In this thesis, I explore the relevance of computational reinforcement learning to the philosophy

of rationality and concept formation. I first argue that the framework of reinforcement learning

can be used to formalize an intuitive notion of bounded rationality, thereby enabling new analysis

of rational agency under realistic assumptions. I then show how the process of concept formation is

intimately connected to an agent’s capacity to be rational, subject to relevant resource constraints.

Together, these claims suggest that rational agents must adopt a reasonable set of concepts. The

main contribution of this work is an initial characterization of what constitutes a good set of

concepts for a resource constrained rational agent: namely, the set makes the appropriate trade-off

between simplicity (so planning and learning are easy) and representational power (so decisions are

effective).



Chapter 1

Introduction

Understanding the nature of good reasoning is a fundamental goal of philosophy, along with major

subfields of computer science, economics, and beyond. Often, these studies concentrate on highly

idealized models of rational behavior or belief: what would the perfect agent do in the same situ-

ation? Such idealizations can serve as a guide for clarifying our own belief forming and decision

making practices [28].

However, there is more to reasoning than just this golden standard. A holistic theory of ratio-

nality is likely to benefit from sharpened assumptions that better capture the situation most agents

face, such as constraining the amount of computation available or limiting prior world knowledge.

To this end, alternate theories have sought more realistic characterizations of good reasoning. The

bounded rationality framework introduced by Simon [138] and its kin, such as bounded optimal-

ity [129], minimal rationality [27], ecological rationality [51, 50], and computational rationality [49]

all provide strong arguments for focusing attention on something other than idealized rationality.

As stated by Christopher Cherniak, the proponent of minimal rationality: “The assumed concep-

tion of rationality in philosophy is too idealized to be applied to humans” (pp. 163). I take this
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critique to be correct: with more realistic assumptions, we can draw even more relevant insights

to our own lives and communities. Further, psychological evidence supports the thesis that peo-

ple regularly act in a way that departs from what idealized models suggest, making heavy use of

inductive biases and heuristics to make fast, useful, but occasional non-ideal decisions [78, 167, 77].

Through the appropriate formalism, we can analyze boundedly rational behavior and belief

updating much in the same way that logic, probability theory, and decision theory have given

profound structure and insight to our broader understanding of good belief formation and decision

making practices. Each of these alternative theories of rationality proposes adjustments that more

acutely describe rational behavior. I will discuss some of their nuances in Chapter 2.

I will then turn to recent advances in artificial intelligence research, which have shed light on

mechanistic approaches to learning, belief, and problem solving, subject to realistic constraints on

reasoning. These insights have given rise to algorithms that have empowered our understanding

belief formation and decision making under realistic assumptions; these include the field of rein-

forcement learning (RL), a general problem formation in which agents must simultaneously learn

about their environment while making good decisions in that environment [75, 154, 155].

The first goal of this thesis is to illustrate the power of computational reinforcement learning for

illuminating the nature of reasoning under realistic assumptions. The second goal is to shed light

on the role concepts play in bounded rationality, based on insights from reinforcement learning. In

particular, I advance the following thesis:

Thesis: Bounded rationality is not solely about elegant symbol crunching, but also involves

choosing the right concepts so that symbol crunching is easy and effective. Moreover, we

can understand “right concepts” precisely in terms of the extent to which concepts make the

calculations relevant to decision making both easy and effective.
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To defend this thesis, I argue for three claims. First, I motivate reinforcement learning (RL) [154,

75, 155], as a suitable formalism for studying boundedly rational agents. Second, in light of this

formalism, I argue that the formation of appropriate concepts is an essential aspect of any rational

resource-bounded agent. Third, I offer an initial theory about what constitutes a set of good

concepts for boundedly rational agents based on trading off for representative power and simplicity.

In more detail, I first argue that RL can serve as a theoretical tool for analyzing bounded

rational agents. At a high level, RL unifies learning and decision making into a single, general

framework. Specifically, RL asks how agents can simultaneously learn about their environment

while making good decisions in that environment. In RL, agents are often subject to constraints on

processing power, time, and memory, and are only given limited initial knowledge about the world,

the world’s ontology, and the world’s causal laws. In this sense, RL serves as a generalization of

typical theories of decision making [121]. How does an agent come to learn the consequences of its

actions in an environment that constantly changes? How can an agent form general concepts that

will enable quick and accurate predictions? Through such a general learning framework, I take

advantage of known results in computational complexity theory [7] and computational learning

theory [168, 81], which provide mathematical insight into the nature of accurate belief formation

and problem solving subject to constraints in the real world [1, 60]. RL adopts the formal tools

from both fields, which gives it a privileged vantage to offer a unifying theory of how agents come

to understand their worlds well enough to solve problems in them. This is precisely the connection

I will exploit in order to formalize bounded rationality.

Second, as a consequence of taking RL as a model of bounded rationality, I argue that good

concept formation is a necessary condition for being a rational agent; I claim a concept is good just

when it empowers agents to make better decisions subject to the same resource constraints, building
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in part on the insights of Relevance Theory, developed by Wilson and Sperber [174]. I here take

“concept” to be the psychological entities that an agent can entertain through thoughts, though I

will later divide on two broad categories: 1) concepts about world state, and 2) concepts about agent

behavior, which lets us better align with the tools of RL. I build on existing inquiries into concept

formation that ask: “what constitutes the right concepts rational agents should form?” [21]. I argue

that being a bounded rational agent necessitates the formation of good concepts, building on recent

work in RL [59]. For example, suppose an agent has access to only a small amount of memory and

must plan a route to work in a busy city. Coming up with a good plan of action involves reasoning

about a combination of activities, including walking, navigating through buildings, and using public

transportation. For different choices of how to break down the constituents of this plan (buildings,

doors, crowds, lights, and so on), the agent will speculate over different simulated routes: if the

agent reasons over only their fine-grained motor controls, then considering the forward-search-tree

of all possible paths into the future will quickly exhaust all of the agent’s available memory (for

even generous memory constraints). However, if an agent instead forms concepts that make an

appropriate balance between explaining relevant phenomena accurately and succinctly, the agent

will be able to search over and find a high quality sequence of actions efficiently. To do so requires

appropriate concepts.

Third, I close by offering an initial theory of how to characterize good concepts through RL.

The core of the theory stipulates that agents should seek out concepts that are: 1) simple, so as

to make decision making efficient, but 2) effective, so that the results of making decisions using

such concepts are good. I draw on the tools of information theory to use compression as a means

of making this trade-off, building on the work of Ortega Jr [117], Ortega and Braun [116] who

present a unified account of information theory and bounded rationality. Our problem is to jointly
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identify representations for different states of the world and to model an agent’s own behavior in

an appropriate way. In the example of an agent navigating to work in a busy city, the agent should

find a set of concepts that characterize world states and the agent’s own behaviors that are needed

in order to accurately distinguish between plans that take the agent to work, and plans that take

the agent elsewhere. Critically, such concepts must be parsimonious so as to minimize the resulting

computational costs of operating in the space of those concepts.

To summarize, this work is about defending three claims:

1. Bounded rationality can be adequately characterized in terms of RL.

2. If an agent with finite resources (time, memory, perceptual bandwidth) is considered rational,

then by necessity the agent has formed good concepts.

3. RL suggests a desirable theory of boundedly rational concepts: a concept is rational just

when it supports trade-off between compression and representational power.

The rest of this thesis is as follows. I first (Chapter 2) provide necessary background on ideal

rationality. I also summarize bounded rationality and its neighboring theories–minimal rational-

ity, and ecological rationality. I also give background on computational complexity, computational

learning theory, and RL, which will serve as the core formalisms for much of the work. The second

chapter of the paper is dedicated to introducing, motivating, and defending RL as a reasonable

mathematical language for studying rationality (Chapter 3), in addition to describing some conse-

quences of taking RL as our central model of agency. In Chapter 4, I explore how the practice of

forming concepts [21] is a fundamental project of any would-be realistic rational agent. I suggest

that RL gives us a foothold into evaluating theories of concept formation. In Chapter 5, I close by

introducing a partially realized theory for good concepts.
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Chapter 2

Background

The ability to reason carefully about a diversity of affairs is a hallmark of generally intelligent

behavior. Indeed, it is an essential characteristic of our being that differentiates us from animals.

As Christensen states in the opening of his book, Putting Logic In Its Place, “If there is one respect

in which humans differ most fundamentally from the other animals, perhaps it is our superior

ability to reason about, and understand, our world” [28].

The study of our “ability to reason about, and understand, our world” has received great again

from a variety of disciplines, including epistemology, neuroscience, economics, biology, and machine

learning. In this work, we subdivide our study of rationality into that of practical rationality, which

focuses on making rational decisions [109, 57], and epistemic rationality, which focuses on aligning

one’s beliefs in a rational way [28]. My study here is primarily concerned with practical rationality.

In practical rationality, we focus on how an agent chooses its action, a, given (partial) knowledge of

the current state of the world s and some set of competing alternatives, A. In epistemic rationality,

we focus on the sets of beliefs are most rational given a body of evidence, or alternatively, evaluate

whether a group of beliefs B are more or less rational than another group, C.
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What might it mean for beliefs or actions to be rational? A typical strategy involves describing

conditions for rational belief formation or action selection from the perspective of the ideally rational

agent, giving rise to theories of ideal rationality.

2.1 Ideal Rationality

The nature of ideal rationality differs between epistemic rationality and practical rationality. We

here present both canonical ideal agents–as we will see, however, both variants make similar back-

ground assumptions that limit the usefulness of their respective theory.

2.1.1 Ideal Epistemic Rationality

In epistemic rationality, the ideal rational agent is said to always perfectly align its beliefs to the

available bodies of evidence. “Perfect alignment”, naturally, can have several interpretations.

One standard definition for perfect alignment is that of adhering to probabilistic coherence; any

rational agent’s set of beliefs must always satisfy the axioms of probability:

1. For every proposition X, 0 ≤ Pr(X) ≤ 1.

2. If X is a tautology, then Pr(X) = 1.0.

3. If X and Y are independent, then Pr(X ∪ Y ) = Pr(X) +Pr(Y ).

Here, the probabilities denote an agent’s credences, indicating the degree to which the agent believes

the proposition X to be true.

The above criteria offer a natural test for determining whether an agent is rational: does the

agent’s beliefs satisfy the above conditions? If not, then the agent is not rational. Critically, it

might be that the prescribed properties are necessary for rationality, but not sufficient.
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More generally, as Christensen states, rational beliefs are those that result from good thinking:

“Rational beliefs, it seems, are those arising from good thinking, whether or not that thinking was

successful in latching on to the truth” [28]. But, as Christensen goes on to note, this effectively

kicks our can down the road: what underlies good thinking? What differentiates it from bad?

Christensen gives an initial answer (which he later disagrees with) that we might suppose good

thinking is logical thinking. If an agent is following an appropriate choice of logical rules, the

agent is said to be undertaking good thinking. Here, “good thinking” might mean that the agent

is logically consistent, or that their beliefs are closed under deduction. Hence, no rational agent

can believe in a contradiction, and must also correctly believe that all true claims of a given formal

system are true. Some version in the neighborhood of these properties underlies most pictures

of ideal epistemic rationality—we find a set of necessary conditions that must hold of the agent’s

beliefs for an arbitrary body of evidence.

Suppose you are presented with an immensely complex logical statement that happens to be

a tautology. It is reasonable to assume that the complexity inherent to the statement prevents us

(and any rational agent) from immediately believing its truth. Without properly working out a

proof, it is perhaps irrational to believe such a statement, until you are adequately convinced!

Consider the following rather extreme example:

Example 1. Suppose you come up with a new symbolic system consisting of the alphabet, {a, b, c},

the axiom, aac, and the following rules:

(1) aa Ô⇒ bb (2.1)

(2) ab Ô⇒ c (2.2)
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(3) c Ô⇒ ba (2.3)

(4) b Ô⇒ ca (2.4)

(5) a Ô⇒ ccc (2.5)

You are asked: are either of the following theorems of the above system?

(i) abcabc (2.6)

(ii) aabc (2.7)

Under the criteria of probabilistic coherence or deductive closure, any belief set other than the

one that exactly matches the Truth is said to be irrational. The difficulty of this example is that,

surely, any agent must spend some amount of time determining whether each of (i) and (ii) are

theorems. Surely you can’t be held accountable for having to work through the rules to identify

a satisficing path that leads from the axiom to either (i) or (ii). Indeed, reaching a conclusion

without working out any of the relevant details seems epistemically irresponsible. But, how can

any agent hope to achieve such a feat, if there are arbitrarily many consequences of even basic

axiomatic systems?

Such is the problem of logical omniscience [147, 67, 45]. Should an agent be expected to

immediately know all of the consequences of a given axiomatic system? Some have answered this

question in the affirmative, such as Smithies [147], arguing that a priori justification in favor of

tautologies is strong enough to overcome concerns about omniscience (a priori true claims can be

justified in virtue of their a priori truth!). We will return to this issue in Section 2.1.3.

Lastly, it is important to distinguish between diachronic and synchronic explanations of belief,
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and their role in rationality. Diachronic rationality refers to the (rational) process of updating

one’s beliefs. Suppose an agent’s current beliefs are based on some evidence collected over time,

E1, . . . ,Et. Then, given a new body of evidence, Et+1, how should the agent update their beliefs in

light of the new evidence? A typical response might be to invoke Bayesian Conditionalization as an

appropriate belief updating rule (see Chapter 4 of Titelbaum [164] for more details). Conversely,

synchronic rationality refers to the process of rationally maintaining one’s belief at a particular

moment in time (see Chapters 1-3 of Titelbaum [164] for more background). That is, ensuring that

your beliefs are contradiction free, for instance. In both variants of belief, the problems with the

ideal persist in roughly the same form.

Our first take on ideal rationality prescribes some set of necessary conditions on rationality

as some appropriate set of criteria to meet. As in the problem of logical omniscience, idealized

rationality tends to bestow agents with unlimited resources, which is problematic. Fixing this

problem is the primary aim of bounded rationality.

2.1.2 Ideal Practical Rationality

Our other variant of ideal rationality concentrates on making good decisions, and so finds its roots

in economics, rational choice theory, and decision theory [40, 172, 17]. We now suppose an agent

is tasked with making the right decision given a set of competing alternatives. Again, we need

to clarify what “right decision” means. The usual formalism for such a problem assigns a utility

function to different outcomes; then, a decision making agent is tasked with making choices over

time so as to maximize its utility. We imagine there exists a set of possible choices, A = {a1, . . . , an},

and a set of possible world states, S. Then, the agent must make a choice a ∈ A, and is evaluated

based on the expected utility of its choice. The optimal choice is then defined as the action that
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maximizes expected utility:

a∗ ∶= max
a∈A ∑s∈

U(s)Pr(s ∣ a), (2.8)

for U ∶ S → R a utility function, expressing the desirability of each given state of affairs, s ∈ S, and

Pr(s ∣ a) denotes the probability of action a leading to world state s.

In this simple formulation of utility maximization, we can compare the utility of the agent’s

choice â to the optimal choice a∗:

U(â) −U(a∗), (2.9)

which yields a direct measurement of the desirability of an agent’s choice. For more on decision

theory and its variants, see Steele and Stefnsson [149].

Critically, if the agent is uncertain about either U(s) or Pr(s ∣ a), things become more difficult.

This poses the problem of decision making under uncertainty, as studied by Knight [82]. If we

further generalize Knight’s setting to include an arbitrarily long sequence of consequences, we find

ourselves in the setting of sequential decision making under uncertainty. That is, when an agent

takes an action, we model how the world might change as a result (and in turn, present the agent

with a new decision problem, one step forward in time). Here, agents need to consider not just

the immediate consequences of their actions but also the long term consequences. When the agent

does not know how the world works (the causal rules), this decision making paradigm is popularly

formalized by computational reinforcement learning. We will attend to the full details of this

subject in Section 2.5.

However, the same problem of logical omniscience rears its head again: how is an agent to know,

a priori, the relevant quantities needed to find the best action? We again assume that the ideal

(practical) rational agent knows the utility of every action it might execute in every state, and acts
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according to a∗ at all times. This is perhaps a useful construct to have defined, but is not helpful

for illustrating rational behavior to any agent with resource constraints; suppose, for instance, that

an agent can only hold a certain number of action utilities in its head at once. In this case, how

are we to act? To answer this question we will next turn to the bounded rationality framework.

To summarize, these two characterizations broadly represent idealized theories of rationality:

either an agent is assessed according to its capacity to make decisions with respect to some utility

function (pragmatic rationality), or is evaluated according to the extent to which its belief form-

ing/updating methods meet a certain set of criteria, such as closure under deduction or Bayesian

conditionalization (epistemic rationality). Naturally, the ideal in both cases is said to outperform

all other approaches – the ideal pragmatic agent always chooses U(a∗), and the ideal epistemic

agent always maintains correct beliefs. As highlighted, these ideals are not without issue.

2.1.3 The Purpose of Ideal Rationality

It is worth briefly discussing the purpose of studying rationality. Typically, rationality is used to

clarify what could, in principle, be done in response to the core practices of the mind, with a focus

on deduction, belief forming, and decision making. Theories of rationality are often out to achieve

multiple different objectives: in some cases, we might care about clarifying what is the normative

“correct” thing to do in response to some stimuli. This notion of “correct” might be used to guide

people in their own reasoning and belief formation practices. For example, if you hear thunder,

it might be appropriate to believe that the weather outside will take a particular form. It would

be irrational to suppose that someone were simulating thunder sounds without other evidence to

make such a situation more feasible.

To better highlight the issues at play, let us consider the different roles rationality can play.
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First, rationality can be used as a guide for our reasoning. We hope to bolster our ability

to seek out appropriate knowledge, and to make good decisions in the face of uncertainty. In

what sense does ideal rationality provide is with meaningful instruction as to how to update our

beliefs or make good decisions? We lack the ability to introspect and identify the precise real

numbers corresponding to our beliefs, but more importantly, Bayesian belief updating is known

to be intractable in even simple domains. So, again, we find ourselves failing to find usefulness in

practice. Properties like deductive closure or probabilistic coherence give rise to issues concerning

logical omniscience for nearly any symbolic system of relevance. But of course there is some use in

these ideals: we can clarify what should be done, in principle, which can give us a clear theoretical

picture of what, under realistic assumptions, we can hope to achieve. While we can’t expect to do

full on Bayesian belief updating for all evidence, we can assert that we should be approximating

something like these kinds of methods. It is in this sense that these ideals are highly informative:

they can make concrete our objectives when we operate under realistic assumptions.

Second, rationality can be used to place blame on others when they deviate wildly from certain

norms. This motivation raises more questions than it answers. Consider logical omniscience: surely

no person is responsible for assigning knowing all True propositions of a given system. But if we

can’t hold them blameworthy for this, what can we? Is there not always an out, that we’re not

ideal reasoners so mistakes are inevitable? Surely there is hope here. In the same way that ideal

rationality helps clarify our objectives of rationality under realistic assumptions, so to can we find

how to place blame for failing to be rational under realistic assumptions: if an agent has the relevant

computing time, requisite knowledge, and acumen, they can be held blameworthy for making highly

sub-optimal decisions.

Third, it can be useful to clarify what the perfect form of rationality looks like to understand
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what improvements we should carry out. Often we are trying to move closer to some golden

standard, which variations of rationality can give us.

To conclude, ideal rationality is still useful insofar as it informs the objectives of rationality

under realistic assumptions. We can then form and evaluate appropriate approximations according

to the sense in magnitude that they deviate from the ideal under the relevant assumptions. We

next introduce some of these previous theories.

2.2 Alternative Theories

Many alternative theories have been proposed, each of which attempting to remedy different short-

comings of idealized rationality by studying rational agents in a more realistic setting. The origin of

this line of study comes from bounded rationality, first introduced by Simon [138], which proposed

to characterize an agent’s capacity for rational behavior subject to relevant resource constraints.

These constraints can come in many forms, but are typically on 1) limiting thinking/computational

time to reason, 2) limiting memory/space used to reason, 3) limiting the perceptual bandwidth or

accuracy, and 4), limiting an agent’s prior knowledge about the world, including its constituents

and causal rules.

At a high level, the following alternate theories have been developed:

• Bounded Rationality [138]: Proposes a theory of rationality subject to constraints of relevance,

like thinking time and memory.

• Minimal Rationality [27]: Seeks to identify the minimal set of conditions needed for an agent

to be rational.

• Ecological Rationality [51, 50]: Extends bounded rationality to more closely consider the rela-
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tionship between agent and environment; a decision is rational depending on the environment

or context in which it is made.

• Computational Rationality [49, 92]: Formalizes bounded rationality through a mixture of

computational models and artificial intelligence. Indeed, this is the most closely aligned to

the RL variant I present.

In the following sections, I provide a birds eye view of each of these theories. Largely, I take their

accounts to be correct. The nuances that differentiate them, while important, are not intended to

be the focus of this work.

2.2.1 Bounded Rationality

Bounded rationality was first developed by Simon [138]. The core of the theory rests on the

consideration of constraints placed on a given (would-be) rational agent: “Theories that incorporate

constraints on the information processing capacities of the actor may be called theories of bounded

rationality” (pp. 162 [138]). Simon’s initial focus was in an economic context, so his discussion

concentrates largely on practical rationality (though parallel conclusions can be drawn for epistemic

rationality).

Naturally, as we will explore in the next section, there are several ways to constrain the infor-

mation processing capacities of an actor. Simon suggests that bounded rationality more generally

explores deviations from assumptions typically made by theories of rationality, including:

1. Variations of the utility function, for example, through the incorporation of risk/uncertainty.

2. Impose incomplete information: perhaps the agent must choose between options A and B

while only being able to ask one question of limited scope about either A or B.
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3. Deviations from the original goal.

Simon’s attention was on practical rationality. As such, he develops a conceptual account

of what it might look like to impose constraints on decision making. Simon raises the example of

playing a game of chess, in which he defines two canonical problems: 1) choose an optimal sequence

of moves that will win the game, or 2) come up with a means of accurately evaluating each move.

These are, in essence, the two (overlapping) problems facing a chess playing agent. Morgenstern

and Von Neumann [109] said of the matter, “...if the theory of chess (i.e. the complete tree of

possible games) were really fully known there would be nothing left to play” (pp. 125). Simon

recalls that they go on to suggest that, despite this striking fact, it does nothing to help guide an

actual chess player:

But our proof, which guarantees the validity of one (and only one) of these three al-

ternatives [that the game must have the value of win lose or draw for White], gives no

practically usable method to determine the true one. This relative, human difficulty

necessitates the use of those incomplete, heuristic methods of playing, which constitute

‘good’ Chess; and without it, there would be no element of ‘struggle’ and ‘surprise’ in

the game.

–Simon (pp. 125)

This is precisely the problem of logical omniscience rearing its head once again – despite full

knowledge of the rules of the game, it is a challenge to determine a decent solution to either of

the two core problems Simon discusses. There is a striking similarity to playing chess and to

Example 1. At best, we rely on heuristics based on many prior experiences of playing the game [37]

(or solving logic puzzles). To actually solve the game requires searching a massive structure: Simon
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suggests there are roughly 10120 possible games, and so requires a great deal of thinking time to

exhaustively search all possible games for the best move. This, and related matters, underlies our

need for thinking about rational decision making in light of some constraints. How exactly to model

the constraints, and how to conceptualize possible theories of rationality in light of those theories,

has remained an open question.

Aumann [9] presented survey of several decades of work that have since built on Simon’s ideas.

Aumman concludes the piece by posing a question:

We content ourselves with one open problem, which is perhaps the most challenging

conceptual problem in the area today: to develop a meaningful formal definition of

rationality in a situation in which calculation and analysis themselves are costly and/or

limited. In the models we have discussed up to now, the problem has always been

well defined, in the sense that an absolute maximum is chosen from among the set of

feasible alternatives, no matter how complex a process that maximization may be. The

alternatives themselves involve bounded rationality, but the process of choosing them

does not.

– Aumann [9], (pp. 12)

We return to this question later in the chapter by offering reinforcement learning as an appro-

priate model for inspecting rational behavior under realistic assumptions.

2.2.2 Minimal Rationality

Minimal rationality was proposed by Cherniak [27]; its main claim, like many of the competing

theories we will discuss, is that ideal rationality is far too idealized to be useful to people:

The unsatisfactoriness of the ideal general rationality condition arises from its denial of
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a fundamental feature of human existence, that humans are in the finitary predicament

of having a fixed limit on their cognitive capacities and the time available to them.

–Cherniak [27] (pp. 165)

On the basis of this background claim, Cherniak seeks out the minimal set of conditions needed

of an agent to be considered rational. He takes this view to properly offer a normative account of

rationality. The search for such an account leads to the minimal general rationality condition:

If an agent has a particular belief-desire set, he would attempt some, but not necessarily

all of those actions which are apparently appropriate.

–Cherniak [27] (pp. 166)

This is in essence Cherniak’s view: we need not on board all of rationality, only some smaller

set of conditions that facilitate the right kind of belief forming or decision making practices.

2.2.3 Ecological Rationality

Ecological rationality was introduced by Gigerenzer [50], Gigerenzer and Todd [52] and Smith

[146] and has received continued attention in the literature.1 Like bounded rationality, ecologi-

cal rationality concentrates on how agents should best be making decisions under more realistic

assumptions than rational choice theory: “[We] propose a class of models that exhibit bounded

rationality...These satisficing algorithms operate with simple psychological principles that satisfy

the constraints of limited time, knowledge, and computational might, rather than those of classical

rationality” (Gigerenzer and Goldstein [51], pp. 656).

However, unlike bounded rationality and its kin, ecological rationality focuses primarily on the

relationship between agent and environment. The theory suggests that the essence of rationality is

1For more work in this vein, see Todd and Gigerenzer [165, 166], Gigerenzer and Goldstein [51].
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tied up in a fundamental way to the environment an agent inhabits. Instead of rationality relying on

the appropriate use of some (say, logical) tools, ecological rationality suggests that effective practical

decision making is constituted by domain-specific heuristics that lead to quick and effective action.

For instance, Todd and Gigerenzer refer to the example of choosing to be an organ donor in

Germany, where 12% of adults are organ donors, and Austria, where 99% are donors. Todd and

Gigerenzer suggest that, when controlling for relevant other factors like economic status and cultural

differences, we still lack explanation for why opt-in rates vary so much between. However, on further

inspection, Johnson and Goldstein [72] find that the two countries differ as to the default setting: in

Germany, individuals have to actively sign up, whereas in Austria, individuals have to actively opt-

out. Johnson and Goldstein suggest the following heuristic is at play: “When faced with a choice

between options where one of them is a default, follow the default.” This example is intended

to highlight how the choice of “institutional” aspects of the environment can clearly impact the

behavior of individuals in a predictable way. Ecological rationality puts forth these environmental

considerations as central: being rational is often about finding the appropriate heuristics to guide

decision making, in light of the given environment.

One aspect of ecological rationality is pertinent to our broader discussion: in Chapter 4, I

will investigate the role that concepts play in bounded rationality. Gigerenzer also articulates the

importance of well chosen concepts (though he calls them “external representations”) in the context

of ecological rationality:

Our argument centers on the intimate relationship between a cognitive algorithm and

an information format. This point was made in a more general form by the physi-

cist Richard Feynman. In his classic The Character of Physical Law, Feynman (1967)

placed great emphasis on the importance of deriving different formulations for the same
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physical law, even if they are mathematically equivalent (e.g., Newton’s law, the local

field method, and the minimum principle). Different representations of a physical law,

Feynman reminded us, can evoke varied mental pictures and thus assist in making new

discoveries: ’Psychologically they are different because they are completely unequiva-

lent when you are trying to guess new laws’ (pp. 53). We agree with Feynman. The

assertion that mathematically equivalent representations can make a difference to hu-

man understanding is the key to our analysis of intuitive Bayesian inference.

– Gigerenzer [50] (pp. 94)

In essence, certain representations can be more conducive to the right kinds of thinking, even if

they are mathematically equivalent. I will ultimately agree entirely with the point articulated here

by Gigerenzer and Feynman, but the particulars will differ slightly.

2.2.4 Computational Rationality

Computational rationality, like the others described, posits an alternate form of rationality, this

time with the theory of computation at its center [92, 49]. Two slightly different variants of the

theory have been proposed, the first by Lewis, Andrew, and Singh [92], the second by Gershman,

Horvitz, and Tenenbaum [49].

On the Lewis, Andrew, and Singh view, the focus is on Optimal Program Problems (OPP),

which take three things as input: 1) and environment, 2) a resource-constrained machine, and 3)

a utility function. The study of computational rationality, on their view, is the study of which

methods solve these OPPs; by framing things in this view, the theory is uniquely positioned to ask

and answer questions of the form: “What should an agent with some specific information-processing

mechanisms do in some particular environment?” (pp. 305). In many ways, this view is well aligned

20



with what I will go on to propose in the next chapter: I will simply pose this question through the

lens of RL.

Separately, Gershman, Horvitz, and Tenenbaum propose computational rationality as a mixture

of AI formalisms with typical studies of rationality. Like the other theories so far discussed, one of

the aims is to escape ideal rationality, this time by grounding resource constraints in terms of both

computational time and space and knowledge of the environment through some the tools of AI.

One of the main considerations made is the careful monitoring of the cost of expending one’s

resources. That is, suppose we give agents awareness of the cost inherent in any computation they

were to execute. The resulting notion of rationality would be one that only uses computation when

necessary, optimizing based on these costs. Such processes have been studied at length in other

recent AI and cognitive science literature, as by Zilberstein [176, 177, 178], Russell and Wefald

[130], and more recently by Griffiths et al. [56], Lieder et al. [96].

Gershman, Horvitz, and Tenenbaum offer the following summary of the framework:

Computational rationality offers a potential unifying framework for the study of intelli-

gence in minds, brains, and machines, based on three core ideas: that intelligent agents

fundamentally seek to form beliefs and plan actions in support of maximizing expected

utility; that ideal MEU calculations may be intractable for real-world problems, but

can be effectively approximated by rational algorithms that maximize a more general

expected utility incorporating the costs of computation; and that these algorithms can

be rationally adapted to the organisms specific needs, either offline through engineering

or evolutionary design, or online through meta-reasoning mechanisms for selecting the

best approximation strategy in a given situation.

– Gershman et al. [49], (pp. 278)

21



I here add my own support of the generality of their proposal: there is much to gain by using a

general framework. These three core ideas closely approximate many of the properties I will attend

to in arguing for RL as a setting for discussing bounded rationality, though I spend significantly less

time on this second property (that of metareasoning about incorporating the cost of computation).

Instead, I will go on to argue that agents should form the right concepts for making planning easy.

Though, again, the difference in these points is relatively subtle.

Going forward, I will not concentrate on explicit distinctions between the above theories. I

take them all to be highlighting important issues with ideal rationality, and each bring something

important to the table. Instead, I next focus on unpacking some of the tools at our disposal that

can use give precise meaning to placing constraints on rational agents, including how to limit an

agent’s thinking time, memory, and amount of evidence available.

2.3 Computational Complexity

One of the two central claims of bounded rationality is that imposing constraints on agents is a

helpful practice. To explore this point further, we need some notion of “constraint”. We here

explore models for formalizing the relevant constraints: thinking time, thinking space, and amount

of evidence an agent has collected thus far.

The first constraint imposes limitations on the amount of thought or introspection that can

go into reasoning about a particular matter. Given the appropriate amount of time to think (and

perhaps the right tools, like a chalkboard), agents may come to have the correct beliefs or choose

the right decisions. Even then it’s reasonable to suppose that, due to resource constraints, many

agents may make a mistake somewhere along the way.

To codify this notion we turn to the computational difficulty of solving problems of a particular
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kind. We will find that the straightforward translation of the existing theory fails to fully capture

what we aim for when we constrain rationality from a computational perspective. Many alternatives

and extensions to this theory do exist, however, and we will explore whether these extensions’ can

play the right kind of role in rationality, too.

At a high level, the desirable aspects of computational theory are as follows:

1. A simple, general method for characterizing the difficulty of certain kinds of problems.

2. We can prove bounds of a variety of forms, for a given problem:

(a) Lower: What are the minimum number of primitive moves needed to solve a given

problem?

(b) Average: On average (across problem instances), what is the number of primitive moves

needed to solve a given problem?

(c) Upper: After how many primitive moves can we guarantee that we will have solved any

instance of the problem?

However, there are glaring weaknesses to the theory, too:

1. There is no obvious cutoff for what constitutes a “reasonable” bound. Some have argued in

favor of different thresholds, such as the polynomial worst-case boundary, but it is unclear

this (or other choice of boundary, in principle) is the right answer.

2. The most significant result of the area, P
?= NP is still unproven, and many critical results

are a direct consequence of whether this result is True or False.

3. Some may take issue with translating results from an ideal computer, to an ideal reasoner,

since it is natural to suppose that people cannot reason purely in terms of abstract symbols.
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4. There is no natural notion of a “primitive move”.

We discuss these and others in more detail shortly. The takeaway is that we can defer to existing

analysis on the difficulty of solving certain types of problems as a means of refining our notion of

a realistic agent.

2.3.1 The Theory of Computation

The central objects of study in the theory of computation are computational problems, and the

algorithms that solve them. The space of problems can be broken down into a few subcategories,

with the most canonical case being a decision problem:

Definition 1 (Decision Problem): A decision problem is a yes-or-no question asked of an

input set: x ∈ X . For example, a problem may be defined as being asked of all inputs x ∈ X ,

the question: “is x a prime number?”.

Further problem types generalize decision problems by searching for satisficing instances of a

particular predicate (search problem), or finding an element that maximizes or minimizes some

function (optimization).

For instance, given a natural number x ∈ N, the problem of determining whether x is prime or

not is a decision problem. The solution, called an algorithm, endeavors to solve this problem for

all inputs of the relevant kind (all natural numbers, in the case of primality).

Why bother defining problems in such a specific way? Well, with the specifics nailed down,

we can then analyze the limitations of problem solving. We gain access to a type of mathematical

result we didn’t have access to previously: the characterization of a problem’s difficulty, from the

perspective of how many mental moves (or how much memory) it takes to solve. Is primality testing

harder than sorting a deck of cards? What is the fastest possible strategy for routing traffic in a
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city, optimally? How hard is it to find the shortest proof of a particular theorem? If we can answer

these questions, we start to gain access to problem solving tools (for real problems) we didn’t have

before.

It is not too big of a jump to see how we might then use these constraints to start talking

about rational behavior under realistic assumptions. We can fix the problem of logical omniscience

by only considering agents that have access to N computations, which means they can only solve

problems whose fastest solution takes no more than N steps. This helps us both 1) guide decision

making (what should I do given that I can only run N computations?) and 2) place blame (did

that person misstep, given that they only had N computations? Or was it just due to their resource

constraints?). How might these constraints be instantiated? We have a few options, with the most

typical being worst case complexity.

2.3.2 Worst Case Complexity

There are a few reasonable interpretations of “how many mental moves it takes to solve”. First,

and the most traditional to complexity theory, we define problem difficulty in terms of the number

of primitive computations needed to solve the hardest instance of an input of size N . Again, the

field jointly focuses on the memory resources needed to solve certain problems – we will often talk

of either time resources or space resources required to solve certain problems. This is the essence

of worst case complexity.

Example 2. Suppose we are given a list of words, L. We know the list contains N words. The

problem we’d like to solve is whether a given word, w, is in the list.

How might we write down a sequence of steps that will work for any given L and w?
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From the perspective of a person, if N is sufficiently small, we might be able to see the entire

list all at once. So we just look.

Suppose N is arbitrarily large, though. Now what might we do? A natural strategy would be

to start at the first element of the list, `1, and check whether `1
?= w. If it does, we know w ∈ L. If

not, we continue to `2, and so on down the list. If we check `N and still haven’t found w, then we

know w is not in the list. Note that this is guaranteed to work for any list, for any word.

Question: How many “mental moves” does it take to run the above strategy? It all depends

on how we define a “mental move”! In Chapter 4, and indeed, one of the focuses of this thesis, I

argue that concept choice is intimately connected to an agent’s rationality; this is our first hint as

to why concept formation is so important to decision making. If we consider checking an entity

`i
?= w as a move, then in the worst case, we need N moves. Why? Well, if the item is not in the

list, we have to check all N positions. Alternatively, if we consider comparing each letter between

our word and a given word in the list, then we have to execute at most N ⋅M operations, with M

the length of our word.

In this example, we see that there exist lists for which we must take N moves in order to solve

the problem in a satisfactory way. This is known as worst case analysis. For a given input of size

N , for a given computational problem P, what are the most number of mental moves we’ll need

in order to solve P?

One caveat to the theory is that the field of computational complexity usually doesn’t care

about the precise details of the number of mental moves: a problem that takes N vs. a problem

that takes N + 1 moves are said to be of effectively identical difficulty. More specifically, for a

function f(N), with N the size of the problem (more on that shortly), complexity tends to group

problems of certain difficulties based on the dominating term of f(N). So, if one problem is known
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to take at worst f(N) = 2N +1 operations, complexity theory only cares about the fact that the N

term dominates as N goes to infinity. Consequently, most complexity results will tell us the rough

order of magnitude of growth as the input size grows arbitrarily large, but will ignore details. So,

for a few examples:

f1(N) = 3N2 +N + 7 ≈ N2 (2.10)

f2(N) = eN + 7N2 ≈ eN (2.11)

f3(N) = 8N log(N) + 7 ≈ N logN (2.12)

In general, the worst case complexity is defined as follows:

Definition 2 (Worst Case Complexity): The worst case complexity of solving a given

computational problem P, with input of size N , is said to be the dominating term of the

number of primitive computations needed to solve the hardest instance of size N .

“Dominating term” here describes the asymptotic behavior of the number of computations

needed. If our algorithm takes 3N2 +N + 1 computations to solved a given problem, as N goes

arbitrarily large, the terms N and 1 will have a negligible effect on the overall number of compu-

tations (even the multiplicative factor of 3 will, too!). Consequently, we would call 3N2 +N + 1

an O(N) algorithm. The notation O(⋅) is called “big-oh-notation” and simply expresses shorthand

for defining the asymptotics of the number of computations required (see Sipser [144] or Arora and

Barak [7] for more background).

Using this definition, the field of complexity theory has mapped out the territory of the difficulty

of many known problems according to their worst case complexity. The famous classes of P and

NP are those classes of problems that have worst case scenario that is at most a polynomial of
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N (P ), and those problems for which candidate solutions can be verified in at most a polynomial

number of operations (NP ) [32].

Shortcomings of Worst Case Complexity

Let’s take a step back. We’ve seen how we can explicitly spell out the hardness of a problem in

terms of the number of mental moves needed to solve the problem’s hardest instances. If we return

to our original question of practical rationality, we now have a clear mechanism for avoiding logical

omniscience: if an agent is given some computational budget, we can be clear about which problems

that agent can in principle solve, and which they cannot.

But, there are a few philosophical issues latent in the above theory that require attention.

What Counts as a Computation? First: what constitutes a “mental move”? In the context

of complexity theory, there is at least one useful variant of “mental move”: the number of primitive

operations needed by a Turing Machine. What, then, in the context of reasoning should count?

A natural response might be to look to the psychological literature to characterize our “atomic”

mental moves, and give an account of our cognitive constraints based on these atoms. But, these

mental moves may not be universal across different agents, cultures, languages, or areas of study.

In general, it seems we lack a clear sense of a mental move.

Why Worst Case? Another natural objection to treating worst case analysis as the appropriate

form of assigning problem difficulty is that the problem might be extremely easy, except for one

pathologically difficult instance. For the many iterations of rationality we might care about, worst

case is far too strong. Most problem instances we encounter in our world tend to adhere to a

particular type of structure – it seems silly to measure our ability to reason based on how long it
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would take us to solve problems that never emerge in our world. We want our constraints to be

realistic, not needlessly attached to some far off possible world.

Problem Size A necessary component in assessing a problem’s complexity is measuring the size

of the input. For physical agents, there is no such obvious measurement. Physical agents do not

take as input crisp symbolic objects. We do not get to observe lists in the form: “`1, `2, . . . , `n”.

All inputs are processed through noisy, uncertain sensors, that only given partial information

about our surroundings. How do we characterize the size of a problem? One might consider

measuring the bandwidth of our sensory mechanisms, but even still, as per the phenomena of

Change Blindness [124], we surely do not process every piece of information our sense organs can

perceive. Instead, we throw away information and distill what we perceive into something more

malleable.

The Polynomial Boundary As alluded to previously, it is not obvious what to define as the

right computational constraint, even if we are willing to take on board worst-case analysis. A

common take in the complexity community is to assume that agents can be given a polynomial

amount of resources to solve its problems – so, for a problem on input of size N , the agent in

question must be able to solve the problem of relevance in N c, for some constant c ∈ R≥0. For

example, modern cryptography (that underlies many of our security systems) typically assumes

that cryptographic defenses must be robust with respect to a polynomial adversary – if a malicious

onlooker can crack your code using only a polynomial computational budget, then your code is said

to be insecure. However, it is not obvious why polynomial should be the appropriate boundary when

discussing rationality. Imagine you are placed in a room with a whiteboard, access to the internet,

and plenty of coffee, tea, water, and snacks. You have 10 hours to solve a given problem. How you
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align your beliefs after this highly focused experience compared to someone driving quickly by a

park that must update their beliefs about the number of trees in the park should depend entirely

on the situation at hand: how much time, perceptual fidelity, and data do you have available

to you? Moreover, there clearly exist polynomials with large enough exponents that prevent us

from performing the relevant number of computations in a single lifetime (or, exponents with a

small base). It is a striking fact that most known polynomial time algorithms have relatively small

constant factor exponents, and likely not one we should rely on to justify the polynomial boundary

as the definitive line-in-the-sand for reasonable computation.

Exactness vs. Approximation The traditional definition of worst case complexity tolerates no

notion of error. The problem must be solved, exactly, for all possible inputs. This is an extremely

high bar, given that some error is practically necessary for effectively any agent – a theory of

rationality that expects perfection is unhelpful when agents will necessarily make mistakes. More

generally, we might only care about getting an answer that is sufficiently close to the true answer.

For example, when asked how much gas we have in the car, we only really need a rough estimate.

Approximation algorithms give us a formal means of capturing this notion: algorithms are allowed

to return an answer that is said to be sufficiently close to the true answwer (often with high

probability).

In summary, we find five shortcomings of treating worst case complexity as the appropriate

means of constraining a physical agent’s resources in deliberation:

1. What Counts: It’s not obvious what should constitute a primitive move in deliberation.

2. Problem Size: When our inputs are coming from sense organs, there is no clear measurement

for problem size. So, we may lose the ability to talk about deliberation constraints.
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3. Why Worst Case: Only considering the worst case ignores the fact that we might never have

to actually deal with the worst case.

4. Constraints – Polynomial, or Otherwise: The polynomial boundary is not clearly the right

choice for constraining physical agents.

5. Exactness vs. Approximation: Surely we can tolerate occasional error, or near-optimal results.

So, hardness-of-approximation seems a more appropriate tool for analysis.

I next turn to two alternatives for that may help us alleviate some of the above five concerns.

2.3.3 Average Case Analysis

Average case analysis extends worst case analysis by supposing we have some collection of possible

inputs, which we tend to describe via a probability distribution over our input space, D [91, 18].

That is, for each element of interest, x ∈ X , D assigns some probability to each element D(x) =

Pr(X = x), indicating the likelihood of the element x occurring. Then, our interest is in assessing

the expected number of computations needed in expectation over the distribution D. This gives us a

way to avoid anomalous and pathological cases that drive up the complexity of our certain problems

– we simply suppose that in our world, such instances might have negligible or zero probability.

For instance, if we return to our example of searching for an element in a given list, we might

supposed that we place all of the probability mass on problem instances on cases where the item

is either 1) in the first half of the list, or 2) not in the list at all. Then, we can see the complexity

will be roughly N
2 , for a length N list.

As we learn more about our world, we can better characterize the distribution D for different

domains, thereby tightening our knowledge of how hard certain problems should be for agents in
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our world.

Average case complexity gives us an additional tool to constrain problem difficulty, but many

of the issues of worst case analysis persist. The most important one, perhaps, being that whereas

before we didn’t know how to measure problem size, now we don’t know how to pick D and measure

problem size. For agents wandering around the Earth it is unclear how to model the distribution

of problems they will encounter. So, we can’t really gain insight into how hard, on average, the

problems they face will be, unless we know before hand where the agent will go. Coming up with

such a distribution is arguably as hard as coming up with a perfect predictive model of the world

(“can we predict what problems we’ll see?”). If we’re wrong about D, then we can be wrong about

measuring complexity, too.

So, while Average Case gives us further granularity at specifying constraints, it still doesn’t get

everything quite right.

2.3.4 Approximation

Moreover, it seems necessary to allow people to error. Physical agents will necessarily be uncertain

about aspects of their worlds about which they will reason, or will need to make split second

decisions about complicated matters. In either case, sometimes, error is permissible from a rational

perspective. For instance, again consider the list case: we have a list of size N , and we search for

an element e. But, we only get logN seconds to make the decision. How best should we spend this

time? What would the ideal rational agent do subject to this time constraint?

In general, we need some scheme for accommodating error. When we focus on the learning

theoretic framework in the next section, we will see how statistical considerations will produce a

natural notion of error tolerance. But, from a computational perspective, it turns out we can get
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a similar, well justified notion of error.

This view of error comes from the field of approximation algorithms [71, 171]. The goal here is

to develop an algorithm, A, that nearly solves a problem P, such that the solution generated by

A is sufficiently close to the true solution. Consider the following example:

Example 3. Consider the knapsack problem, Pks, in which we are given a sack with weight capacity

C, and a collection of N objections o1, . . . , oN . Each object has both a weight and a value.

The goal of the problem is to fill the sack with some subset of objects that maximizes the total

value of objects in the sack while not exceeding the weight capacity. So:

max
O⊂o1,...,oN

∑
o∈O

V (o), (2.13)

s.t.∑
o∈O

W (o) ≤ C. (2.14)

With V (o) expressing the value of object o and W (o) expressing the weight of object o.

This problem is a classical NP-Hard problem (so we don’t think it can be solved in polynomial

time).

However, it can be approximated quite well with the following strategy. Per the result of Dantzig

[36], we can simply sort the items based on their value-per-unit-weight, and add the most value-

dense items until we reach capacity.

Such a strategy is guaranteed to achieve a bounded degree of error (under certain assumptions,

which we here ignore). If the true optimal solution achieves a total knapsack value of m, then the

above strategy will fill the bag with no less than m
2 value. Pretty good considering how simple (and

easy to run) the strategy is!
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So, let us take stock. Some problems are hard to compute, whether from a worst-, average-, or

even best-case perspective. However, we can still come up with strategies for solving these problems

in a way that guarantees reasonable outcomes, given less resources. What are the philosophical

implications? The main upshot is that even the ideally rational agent, subject to computational

constraints, can achieve reasonable solutions in the time allotted.

Still, the shortcomings discussed previously do not permit a fully general means of applying

computational constraints to a reasoner. In the approximate case, a further difficulty appears:

what is considered tolerable error?

And all the while, our problem size is not measurable. This is perhaps the most damming of

the remaining difficulties. For an arbitrary problem encountered by a physical agent, how are we to

measure its size? In principle, many problems can be compressed and solved, too. Do we measure

the perceptual bandwidth of the agent? The memory? The size of the mental atoms needed to

think about the problem? The size of the smallest compressed form of the problem? We lack the

appropriate tools to capture the appropriate measure. We will return to this matter in Chapter 4,

where we explore the relationship between concept formation and efficient use of cognitive resources:

with the right concepts, certain computations become easier. So, the ideally rational physical agent

forms concepts that make computational the most robust and efficient possible, while still retaining

accuracy.

2.4 Computational Learning Theory

We have now seen how to characterize the difficulty of a given computational problem. Still, there is

much more to rationality than deduction. What about induction? How do we deal with uncertainty?

What about perception, and the appropriate gathering or handling of evidence? Questions of
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this nature find a better home in the computational learning framework, rather than standard

computational theory. There are of course computational problems of relevance to discuss: given

some data, and a set of initial beliefs, we might ask about the worst/average/best case complexity of

updating one’s beliefs to best reflect the current state of affairs, in light of the evidence. While such

questions should make an appearance in our discussion of rationality, we still require an additional

formal tool to make progress in the more general picture.

This tool is that of learning theory, often called either Computational [168] or Statistical [170]

Learning Theory. Together, they will offer further techniques for cleanly defining rationality.

At a high level, they give us the ability to characterize how much evidence is needed before an

agent can acquire a reasonable hypothesis of some property or state of affairs. In this way, there is

a parallel between these theories and Bayesian views of belief updating. The theories depart from

Bayes in three critical ways: 1) We’d like to characterize the precise amount of evidence needed,

in the same way we previously showed we can define the number of computations needed, 2) We

typically require that all belief updating must be done with a reasonable computational budget, and

3) Typically, the results are agnostic to priors, though there are natural extensions to incorporate

Bayesian methods of belief updating, proposed by McAllester [104].

We will discuss two frameworks, the Probably Approximately Correct (PAC) Learning frame-

work introduced by Valiant [168], and the Statistical Learning Theory framework, with the earliest

results presented by Vapnik and Chervonenkis [169]. Each give us a mathematical model for dis-

cussing the relationship between quantities of evidence and accuracy of beliefs.
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2.4.1 Probably Approximately Correct Learning

The PAC framework focuses on the following question: how much evidence does an agent need to

have appropriately learned a given boolean function?

Here, “evidence” means a pair of datum (x, c(x)), appropriately learned means “has a good

enough understanding of the function” (h ≈ c), and “boolean function” means some labeling of

entities in a given domain (c ∶ X → {0,1}). Typically, these boolean functions are called “concepts”,

but they are qualitatively quite different from how we will use concept in later chapters.

More formally, we suppose we’re targeting a particular kind of item – let’s say, for example,

that we’re dealing with images. A boolean function is a labeling for each image in our collection.

For example, one concept might be “landscape” that picks out which images are landscape photos

and which are not. In the simplest case, we define our collection of objects according to a (possibly

infinite) alphabet, X . The function, then, is c ∶ X → {0,1} that separates entities in the collection

into the objects that satisfy the property and those that don’t. So, if c(x) = 1, then x is a landscape

photo, and if c(x) = 0, then x is not a landscape photo.

Naturally, this understanding of “function” is much too simple. Actual functions of interest

can be far more nebulous than we have just given them credit for. So, we will acknowledge that

in the PAC setting, our notion of function is perhaps too sparse, and attend to this point more

fully in Chapter 4. Other parts of learning theory have generalized this notion to multi-class

(c ∶ X → {0, . . . , n}), and real-valued function (c ∶ X → R), but these complicate matters.

As a final assumption, we suppose the world is endowed with an infinitely wise and patient

teacher that will label any object we select from the collection with the true label. More formally,

we suppose that the agent in question can select entities from the collection according to some

probability distribution D (that is, the support of D is X ). When the agent samples an entity
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x ∼ D, the teacher tells the agent the true label of the concept. So, at each time step, the agent

samples x and observes the pair ⟨x, c(x)⟩. For example, in the case of the images, the agent gets

to see an image, and is told the image either does or does not contain a dog.

The central problem is as follows. Given a collection of n independently sampled and identically

distributed (i.i.d.) pairs, ⟨xi, c(xi)⟩, for what value of n can the agent select a hypothesis h from

a given hypothesis space H that roughly matches the original function? The hypothesis space in

the most general case is simply equivalent to the space of functions with the same mapping as the

function, so H = {h ∶ X → {0,1}, but this need not be the case. We might suppose a simplicity

bias on the hypothesis space, that restricts H to functions that are suitably simple (perhaps as

measured by their computational complexity!).

Our mission is to measure the effect of the amount of evidence on the quality of an agent’s

understanding of different functions. In this way, it resembles Bayesian belief updates. The major

difference is to prove theorems that relate the size of evidence with the confidence an agent is

justified in having with respect to a particular function. These theorems will vary slightly depending

on whether the learning problem is realizable or agnostic, but the takeaway is the same: an agent

needs N data points to adequately learn a hypothesis that closely resembles c.

Consider the following example concentrating on learning an interval in 1D space:

Example 4. Let c denote the boolean function c(x) ≡ 5 ≤ x ≤ 20, with x taking values in natural

numbers from 1 up to 100. Let D be a uniform distribution over the interval N[1∶100].

If we choose our hypothesis space to be the set of all functions that map all natural numbers

from 1 to 100 to {0,1}, we have a massive space of functions to search through: for each x, we

can either assign it to a 0 or 1, and thus, there are a total of 2100 possible hypotheses. That is

monstrous!
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In an ideal learning setting, we can take advantage of some domain knowledge, or use a generally

useful inductive bias over model selection such as a simplicity prior. For instance, suppose we search

for a single decision boundary, τ , where everything greater than or equal to τ is in the interval

(assigned to 1), and everything below τ is outside the interval is set to 0. This yields only 100

hypotheses (one for each possible setting of τ), down from 2100. But note that now we are in the

agnostic setting – even the best boundary of τ = 100, we will error 0.15 of the time. So, this new

hypothesis class is easier to search through, but less expressive. This is a fundamental dilemma

underlying learning, and one that will be critical to our later discussion.

How can we balance between these two extremes? In general, if we don’t know anything about

our domain, we cannot. Fortunately it is often the case that certain kinds of inductive biases will

be natural for a variety of domains.

What we’re after is a hypothesis class that is sufficiently general, but not so general as to blow

up the size of the hypothesis class.2

For the interval example, let us suppose we consider the space of hypotheses that define any

continuous interval in N[1∶100]:

Hα,β = {h(x) = 1 (α ≤ h(x) ≤ β)}, (2.15)

for α,β ∈ N[1∶100], and α ≤ β.

Now, after even just one sample, we can already start to eliminate huge portions of our hy-

pothesis space. So, this is a suitable choice for H – it is not too big, allows quick learning, and can

faithfully represent the true function. Learning is entirely about making precisely these trade-offs.

The primary results in the PAC literature are generalization error bounds, which effectively

2This trade-off is intimately connected to the bias-variance trade-off [48].
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suggest how much evidence is needed by the agent until it can pick a hypothesis, h ∈H, such that

the chosen hypothesis will not differ too much with respect to the true function. Here, “differ”

is measured in terms of a bound on the probability of error, with respect to samples taken from

the distribution. Such results will (sort of) extend to the full RL setting, allowing us to relate the

amount of evidence an agent needs before it can adequately make justified decisions.

Definition 3 (PAC Learnable): A boolean function c is said to be PAC Learnable if, for a

given hypothesis class H such that c ∈H (realizability), then there exists an algorithm that will

output an h ∈H that is sufficiently close to c.

“Sufficiently close” has a precise technical meaning, but it isn’t all that important for our present

discussion. For completeness, a boolean function is PAC Learnable if, for a given ε, δ ∈ (0,1), the

loss of the chosen hypothesis L(c, h) is bounded with high probability:

Pr
x∼D

{L(c(x), h(x)) ≤ ε)} ≥ 1 − δ. (2.16)

The δ parameter captures the “probably” part of the PAC acronym, while the ε captures the

“approximately” part. The loss function will vary depending on the family of boolean function

and hypothesis. If we are learning a boolean function, then a natural choice for loss is the mean

squared error:

L(c(x), h(x)) ∶= ∣c(x) − h(x)∣2. (2.17)

If we are instead learning a probability distribution (so our hypothesis space is the space of proba-

bility density functions), then a more natural measure would be any probability distance metric.

Basically, the PAC property is said to obtain of an algorithm if, when the agent outputs a

hypothesis, the hypothesis is guaranteed to be pretty close to the true function with high probability.
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This is a strong guarantee for an algorithm to have!

Can we make this guarantee of people? That is, can we state that others in our community use

concepts in a way that is largely consistent with each other (where “consistent” means, with high

probability, they are ε apart?) Probably not. In large part because our data is not independent

and identically distributed (we have routines, and tend to have certain experiences in sequence),

we all perceive things differently according to our representational or perceptual biases (is the dress

blue or gold?), and our concepts are probably not so rigid so as to afford such precise guarantees

(is the pile of sand a heap or not?).

Still, the PAC learning frameworks gives us extremely general results about boolean function

learning:

Theorem 1. Every boolean function class is PAC learnable under a finite Hypothesis class, H,

(and the realizability assumption that c ∈H) with evidence of at most:

⎡⎢⎢⎢⎢⎢

log
∣H∣
δ

ε

⎤⎥⎥⎥⎥⎥
, (2.18)

where δ, ε ∈ (0,1) denote accuracy parameters.

This states that if we have finitely many hypotheses to consider before finding a sufficiently good

one, we need roughly log(∣H∣) labeled data points before we can learn the function of relevance.3

When we return to our discussion of concept selection in Chapter 4, it will be important to

clarify how concepts impact quantities like the above generalization error bounds – can an agent’s

choice of using a group of concepts C1 guarantee that the agent will be more able to correctly make

3One might wonder what happens when the hypothesis class is not finite – Vapnik and Chervonenkis [169] in-
troduce the Vapnik-Chervonenkis Dimension (VC-Dimension) that allows careful measurement of a hypothesis class’
complexity, even if its size is infinite. Then, the evidence needed to learn most functions depends on the VC-Dimension
of the function class, not its size.
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inductive inferences than those represented by a different group of concepts C2? Simply: yes! To

gain some initial insight into why this may be the case, let us turn to one of the seminal results

of learning theory. The result lets us clarify the nature of errors made by different approaches to

learning.

Specifically, there are said to be two sources of error 1) approximation error, and 2) estimation

error. Approximation error occurs relative to concept c if the agent is considering a set of hypothe-

ses, H, such that the best hypothesis in H, which we denote h∗, is still sufficiently distant from c.

So:

εapprox ∶= min
h∈H

L(h, c), (2.19)

for some function that measures the loss of a chosen hypothesis, h, relative to c, and perhaps

relative to a body of evidence, E. Thus, if c is not contained within H, then the approximation

error is the gap between the best possible hypothesis the agent could learn, and the concept.

Why would we ever restrict the hypothesis class to not contain c? It turns out there are a few

reasons. The primary one being that a smaller space of hypotheses is easier to search through.

In many ways, restricting the hypothesis space amounts to injecting priors about the world, also

called inductive biases [107]. Something like a “simplicity prior” that places preference on simpler

hypotheses rather than complex ones might, in a sharp form, trim the hypothesis space to consist

solely of the simple hypotheses.

The second source of error is called estimation error. This effectively amounts to error that

results from noise in the learning process itself:

εestim ∶= EE∼D [L(ĥE , h∗)] , (2.20)
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where the expectation is taken over the sampled evidence from the data distribution, D, and ĥE is

the chosen hypothesis by a particular agent based on evidence E.

Example 5. Suppose an agent is trying to learn the bias of a coin, q. Before collecting any data,

the agent restricts the hypothesis class to consist of the hypotheses that the coin has bias either 1.0,

0.8, 0.6, 0.4, 0.2, or 0.0. So:

H = {1.0,0.8,0.6,0.4,0.2,0.0}. (2.21)

We further suppose that the loss function in this case is simply the absolute difference between q

and c, L(q, c) = ∣q − c∣.

The agent then flips the coin n times by sampling from Bernoulli(θ = q).

Before even observing the data, we know that if the true function (in this case the true bias of

the coin), is not contained in H, we can get an upper bound on the approximation error:

εapprox ≤ max
c∈[0∶1]

min
h∈H

L(h, c) ≤ 0.1. (2.22)

Naturally, we can tighten this bound as we know more about the true function. For example if

q = 0.45, we know that εapprox is 0.45.

To determine the estimation error, we need to inspect how the agent chooses its hypothesis, Ĥ,

and we’d need to better understand how the evidence will be distributed. In essence, the agent

will be presented with some series of n coin flips, {T,H,H,T,H,T, T, . . .}n, and will be asked to

choose a hypothesis ĥ. Two natural estimators are the maximum likelihood estimator (MLE) and

maximum a priori estimator (MAP); in the MLE, Bayes rule is used to determine the hypothesis

that maximizes the likelihood of the evidence, in the MAP, a prior is chosen and the hypothesis

that maximizes the posterior probability of the given evidence. So, letting E = {T,H, . . . ,}n denote
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the body of evidence:

MLE(E) = max
ĥ∈H

1

n

n

∑
i=1

log Pr(ei ∣ ĥ). (2.23)

MAP (E) = max
ĥ∈H

1

n

n

∑
i=1

log Pr(ei ∣ ĥ)Pr(ĥ). (2.24)

Depending on choice of prior, Pr(ĥ), the MAP estimator will make different decisions from the

MLE. Choice of estimator, then, places preference on different kinds of properties of the solution;

do we care about the impact of a prior? Do we care how accurate the estimator is after n data

points for small or large n? How about in the limit of data?

These are precisely the considerations that determine the trade-offs that go into determining

εestim relative to a particular choice of learning method (in the above, a simple statistical estimator).

From the above example, we can see how, subject to different constraints or different knowledge

of a particular problem, agents will be presented with a variety of choices about how to make

decisions. Through the framework of learning theory, we can start to shed light on how these kinds

of behaviors affect one’s capacity to retain accurate beliefs.

As with computational complexity theory, there are several shortcomings to the model to treat-

ing it as a perfect way to measure a statistical constraint:

1. Experiences are not independent and identically distributed. As we move around the world,

the evidence we’re likely to see changes. Most of learning theory makes the assumption that

there is a fixed distribution over experiences, D, the agent draws data from.

2. Experiences are not nicely “formatted” into easily interpretable properties. As with complex-

ity theory, agents do not get to observe the flip of a coin as either T or H, but instead receive

high dimensional and noisy sensor input of the results of a coin flip.
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3. A proper understanding of concepts likely requires more than just boolean functions.

Each of these points is potentially crippling to the usefulness of the theory. But, revisions exist

that avoid many of the core concerns. In fact, we will find that RL has at least a partial solution to

these problems: experiences will not be i.i.d., experiences will be an uninterpretable mess to begin

with, and our concepts will be arbitrarily rich functions.

To summarize, computational learning theory gives us a rich formal framework for analyzing

how hard it is to learn certain boolean functions. A featured assumption of RL removes prior

knowledge from the ideal rational agent – how should an agent learn, rationally? Which trade-offs

should an agent make? To understand how to answer these questions, we will need formal tools

like the methods introduced above. We can now cleanly state the relationship between an agent’s

available resources (in this case, evidence of the form of ⟨xi, c(xi)⟩ pairs), and its capacity to learn.

2.5 Reinforcement Learning

Intuitively, RL defines the problem of an agent learning to make good decisions in an environment

through interaction alone. The primary objects of study of RL are computational agents, the worlds

they inhabit, and interactions thereof. An agent is any entity capable of taking action, perceiving

relevant information about its surroundings, and receiving rewards that indicates the present utility

inherent in the current state of the world. More precisely, the RL problem is defined as follows:
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Definition 4 (Reinforcement Learning Problem): An RL agent interacts with a world via the

repetition of the following two steps:

1. The agent receives an observation o and a reward r.

2. The agent learns from this interaction and outputs an action, a.

The goal of the agent during this interaction is to make decisions so as to maximize its long

term received reward.

What, then, does the “world” look like? In the psychological literature, the world can be any

manner of phenomena that people (or other animals) experience; how we learn language, games,

norms, or otherwise. Traditionally, in computational RL, the world is assumed to be modeled as

a Markov Decision Process (MDP) [122], a convenient formalism for describing sequential decision

making problems. An MDP is defined as follows:

Definition 5 (Markov Decision Process): A Markov Decision Process is a five tuple:

• S: a set of states describing the possible configurations of the world.

• A: a set of actions, describing the possible choices available to an agent.

• R ∶ S ×A→ R: a reward function, describing the task to the agent.

• T ∶ S ×A → Pr(S)): the transition function, which denotes the probability of arriving in

the next state of the world after an action is executed in the current state.

• γ ∈ [0,1): a discount factor, indicating an agent’s relative preference between near-term

and long-term rewards. As γ gets closer to 0, agents prefer near term reward more.
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The “Markov” in MDP indicates that the transition function, T , and reward function, R, both

only depend on the current state of the world (and action), and not the full state history. So:

Pr(st+1 ∣ st, at) = Pr(st+1 ∣ s1, a1, . . . , st, at). (2.25)

R(st, at) = R(st, at ∣ s1, a1, . . . , st−1, at−1). (2.26)

In short: we can predict the next state distribution and next reward from just the current state and

action. This is incredibly helpful for simplifying analysis. Moreover, if any problem is not Markov,

we can always just roll the last k steps of the world into the state representation, thereby yielding

a Markov model.

The central operation of RL is the repeated interaction between an agent and an MDP. Critically,

the interaction assumes that the agent knows everything about the current state of world: there

is no notion of hidden information (aside from not knowing the causal rules or reward structure).

An extension, the Partially Observable MDP (POMDP) [76], does not make this assumption. In

either case, the agent interacts indefinitely with its world, trying to update its beliefs about what

exists in the world and how to take actions to maximize reward.

The RL framework can also serve as a framework for understanding human behavior. Hu-

mans perceive and take action. While not altogether obvious that real valued rewards govern or

incentivize action, recent neurological evidence suggests that reward prediction is a fundamental

exercise of the human mind [131, 11, 115]. Additionally, any task with a goal can be redefined

purely in terms of reward maximization, so goal directed agents are naturally captured, too. To see

why, consider the following. Let the predicate G assert that some desired property of the world is

satisfied by the current state of affairs. For instance, a person wants to satiate hunger or arrive at
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the airport on time. Such a goal can always be mapped to a reward generation, RG, that provides

an agent with 0 reward when the goal is not satisfied, and 1 when the goal is satisfied. Thus, the

framework is surprisingly general.

World

Agent

observation

reward

action

Figure 2.1: The reinforcement learning problem: An agent interacts with a world by taking actions
and receiving (1) observations, and (2) rewards. The goal of the agent is to take actions that
maximize long term reward.

Some quick clarifications. What is an observation? Intuitively, it’s a single time slice of the input

to sensory organs. For a robot, naturally, this input will instead be the camera (or other sensors’)

input for a particular time. What is a reward? Typically, a real number, denoting how desirable

a particular configuration of the world. For simplicity, we assume rewards are real numbers in the

interval: [RMin,RMax], with RMin and RMax the minimum and maximum achievable rewards

respectively. Lastly, what are actions? We suppose for simplicity that any agent has available to

it some finite set of actions A = {a1, . . . , an}. These actions correspond to the primitive actions

of the agent. That is, for a person, they refer to the muscle controls used to move our bodies, as

opposed to a high level action like “drive to work”. We suppose that additional cognitive machinery

is needed to induce a “high level” action such as “drive to work” from a set of primitive actions.

Forming such high level actions is an active area of current research [85].
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An Example

We now consider what is perhaps the most iconic problem in RL: a grid world, used by the AI

textbook by Russell and Norvig [128]. The Russell and Norvig grid world is a discrete, 3 × 4 grid,

in which each state corresponds to the agent inhabiting one of the grid cells. The agent’s possible

actions are {up, down, left, right}. After each action, the agent receives its (x, y) coordinate

as an observation along with 0 reward (unless denoted otherwise). The grey cell is a wall, as

are the “edges” of the world, which simply prevent movement in that direction. This world is of

course extremely simple. However, this simplicity can count as a virtue in terms of understanding

approaches to RL – we mostly know what the agent should do, so the world can offer insights into

diagnosing various approaches. Of course, the true goal of RL is to reorient approaches to solving

this grid problem at more realistic scenarios where we don’t know the structure of optimal behavior.

Critically, the agent knows nothing about the world in its infancy – it doesn’t know where the

+1 is located, or the semantics of the action up. It has to learn how the world is laid out and where

the reward is from interaction alone. This is an extreme position to take, but it is not necessary to

the formalism. We can of course suppose that any agent we study is endowed with initial knowledge

about the world (or inductive biases that lead it toward more parsimonious solutions).

In this setting, we ask: how can the agent learn to maximize reward in its environment from

interaction alone? We seek a strategy that will ensure, after some amount of experience, that

an agent finds the goal quickly, while avoiding the “−1” cell? Of course, we could write down

the following recipe: right, right, up, up, right. However, this solution is tailored to this

problem, and would fail outright in even slight changes to the problem such as moving the goal or

wall. Similarly, we could have the agent always choose a random action – surely it would eventually

find the +1. But, it would also come across the −1, and might take a long time to get to the +1.
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What we would really like is to find a general purpose algorithm that will solve not just the

above grid world, but any problem like it, and quickly. For instance, suppose the room were ten

times larger, or the −1 moved, or the wall moved, or even the goal – in all of these cases, we’d like

the same method to solve the problem. Understanding the nature of such algorithms is the goal of

RL.

1

Start

-1

+1

Figure 2.2: The classic grid world from Russell and Norvig [128]. The agent starts at the state
(1,1), and moves around the environment in an attempt to reach the terminal state, (4,3).

As an illustrative example, I’ve included a plot showcasing the performance of several approaches

to RL, experimenting with the above grid world, shown in Figure 2.3. In the experiment, each agent

begins from a tabula rasa state – they know nothing about T or R – all they know is that there

are 11 states and 4 actions. The agent gets to run for 20 steps, which constitutes one “episode”.

After each episode the agent is reset back to the beginning, so the best possible strategy would get

+1 each episode. The results showcase the performance of three different strategies for learning to

take actions: (1) Q-Learning [173], (2) R-Max [19], and (3) A random actor. Broadly, Q-Learning

describes instinctive approaches to decision making, fitting into a category called “model-free”

methods. The central guarantee of Q-Learning is that, in the limit of experience, Q-Learning will

perform optimally. So, if run forever, it will eventually do better than R-Max. Conversely, R-Max

explicitly constructs a model of the world to learn, and is thus more often compared to deliberative
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Figure 2.3: Two views of the same results from three simple agents (blue, green, and red) learning
on the grid world task (higher is better), with black denoting optimal behavior. In both plots,
the x-axis denotes episodes, which consists of fifteen steps of interaction. After those fifteen steps,
the agent is moved back to the bottom left state, and the problem resets (but the agent gets to
keep any knowledge acquired in the previous episodes). Roughly, the x-axis in both plots measures
how many steps of interaction with the world the agent gets. On the left, the y-axis denotes total
cumulative reward, while the y-axis on the right denotes average reward (for the same experiment).

models of planning and cognition (and so falls under the “model-based” methods). R-Max comes

with a guarantee akin to the PAC property discussed in the previous section: the property of PAC-

MDP [152]. The PAC-MDP property states that with high probability, after a specific number of

experiences, the agent will achieve near-optimal behavior. So, in general, R-Max has much stronger

guarantees – we know how it will do with finite data.

We find that very quickly, R-Max (pictured in blue) can find an action selection strategy that

ensures it always reaches the goal. Note that after 50 episodes, the agent has received almost 50

reward. So, on almost all of its trials, it has found a path to the +1 while avoiding the −1. Note

that it sits just below the black line, which denotes the reward received by the optimal policy.

Conversely, Q-Learning (in green), takes its first 20-30 episodes to find a reasonable strategy. Once

it has discovered that strategy, it is able to perform well in the final 20 or so episodes. Lastly,

the random approach (in red), never fluctuates far from 0 total reward; sometimes it receives +1,

50



others −1, so in expectation, it gets about 0 (though the −1 is slightly easier to stumble into).

One final critical note is that the notion of expected utility from decision theory has a natural

analogue in RL, which we call value. Value denotes the expected discounted utility of a particular

behavior. Using this quantity we can evaluate different behaviors and identify the best ones.

Concretely, the value of a state, s, is defined as:

V ∗(s) = max
a

(R(s, a) + γ ∑
s′∈S

T (s′ ∣ s, a)V ∗(s′)) . (2.27)

That is, value is the immediate reward an agent would receive (R(s, a)) plus the discounted expected

future reward it would get – if it acted according to the best action a. Fortunately the above

equation also comes along with an algorithm, called Value Iteration, that identifies the optimal

behavior [12]. However, this assumes perfect knowledge of R and T , which, in the true RL setting,

an agent has to learn from interaction (we don’t grow up knowing how doors open, we have to learn

this!).

2.5.1 Some Philosophical Issues

Naturally, the philosophical significance of RL will not be established by how algorithms perform

on small, discrete, grid-based tasks. The essence of the model gives us a formalism for talking

about what agents are capable of when they must both learn about their environment while trying

to be rational in that environment. To access this theory, we will need to stick with the same core

model, but will relax our assumptions in several critical ways. I will depart from what I take to be

the three assumptions at the core of modeling the world as an MDP:

• Markovian physical laws.
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• Full observability.

• Utility as reward maximization.

In our study of rationality, we will avoid making all three of these assumptions. Still, we will look

to RL for insights by translating several of its foundational results from the utility maximization

paradigm to rationality.

Markovian Physical Laws As discussed previously, the Markov property is said to obtain of a

system just when the system’s distribution of possible configuration at time xt can be fully predicted

just from xt−1. It remains an open question as to whether there exist unchanging physical laws

governing the world that depend only on local (in time or space) properties. If such laws were to

exist, then it is likely that we can posit such laws have a Markovian form. Many microcosms that we

encounter are surely Markovian, such as playing chess (and other board games), solving scheduling

problems, aspects of dialogue, and so on. So, even if the full world lacks underlying Markov causal

laws, we can gain insight into how far Markov models might take us in understanding behavior and

rationality in a variety of situations.

Full Observability In traditional RL, the agent in question receives as input the state of the

world at each time step. Critically, per the Markov assumption, the current state of the world

is sufficient (along with an action) for predicting: 1) the next reward to be received and 2) the

probability distribution of next states to be received. In the world, inevitably no agent can actually

observe the full world state. Instead, we receive an ego-centric observation that is highly informative

about our immediate surroundings, but does not tell us everything there is to know about the world.

For instance, if we stand just outside a closed room, we don’t know whether there is a tiger in the
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room or not. We just have to speculate based on our observations. We might lean close to the

door and listen for tiger sounds, and update our belief about the current world state based on

what we hear. Such a setup is captured by the Partially Observable MDP (POMDP) [76]. In a

POMDP, agents explicitly received observations, which only give partial information about the true

world state. The goal, however, is the same: take actions that maximize reward. For this reason,

POMDPs are considerably more general: every MDP can be turned into a POMDP with the trivial

observation function that where the observation received is exactly the current world state. Due

to their generality, they are known to be difficult to solve. Further, much less is known about the

nature of POMDPs, which leaves them as an open and interesting model to study in future work.

For our purposes, we will exploit insights from RL primarily in the MDP setting, and effectively

punt on the full POMDP problem.

Utility as Reward Maximization Traditional stories of rationality focus on one of two things:

proper alignment of an agent’s beliefs or credences to the facts of the matter, or making appropriate

decisions in a decision theoretic setting. In RL, we find a treatment that is most closely aligned

with the latter case of making effective decisions. As discussed previously, the ultimate measure

of an agent’s effectiveness is its capacity to maximize reward. Such a metric yields several specific

methods for characterizing an agent’s effectiveness. These include:

1. The sample complexity of exploration [79].

2. Regret bounds, as in [118].

3. A KWIK bound on the model of the MDP [94].

At a high level, each of these techniques characterizes how well an agent is said to perform, in

general. Sample complexity, akin to computational complexity (and PAC bounds) asks how many
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experiences are needed by an agent before it is guaranteed to make good decisions. This is roughly

like saying: how much evidence do you need about your world until you’re guaranteed to have a good

enough model of it to make good decisions? Regret measures the magnitude of your mistakes as

you learn. Just like computational complexity, both regret bounds and sample complexity bounds

tend to come in asymptotic form.

It is precisely these forms of bounds, though, that will be incredibly important to our unfolding

of bounded rationality through RL. Consider the following example, a k-armed bandit:

Example 6. Consider a k-armed bandit [53], in which you play a game that proceeds in T rounds

1,2, . . . , T .

Each round you must pull one of k possible slot machine arms. Playing arm i collects a sample

from some unknown payoff distribution Ri.

The goal of the game is to pull arms i1, i2, . . . , iT that maximize the received payoff.4

The difficulty of the game is the so called exploration-exploitation dilemma: after t pulls, you’ve

collected some amount of information about a few slot machines. You have two choices:

1. Do you take advantage of the knowledge you have about the arms you’ve already tried and

keep pulling them?

2. Or, do you try new arms, running the risk that they won’t be as good as the one’s you’ve

tried already?

The first response is the decision to exploit the knowledge you already have, while the second

is the choice to explore the world more to learn about other options.

4Other criteria are often of interest too, such as identifying the arm with the maximal expected value.
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The explore-exploit dilemma introduced in the previous example shows up all over the place

in our lives: suppose you go to a restaurant – do you try new food or order something you know

you like? Do you move to a new city you’ve never been to or live in a place you know you are

comfortable? Do you tackle new philosophical territory or do you keep pushing the areas you know

you’ll make progress in?

Such a dilemma is omnipresent. Indeed, in any decision making setting in which the agent lacks

perfect knowledge about the world, the agent must confront the exploration dilemma. This is a

key factor of RL that is not present in any existing theory of rationality. We ask: do agents explore

rationally? In a decision theoretic setting, a good exploration strategy is essential to behaving

rationally (with respect to some utility function).

So, while the full RL framework makes three additional assumptions that are philosophically

inadqeuate, we find that 1) the framework is still immensely useful, even with those assumptions,

and 2) we have a clear path toward relaxing these assumptions. Indeed, further work is likely

needed to further expand on these routes. Here, we focus on what we can get away with in our

understanding of rationality from the formal tools we have introduced thus far.

To summarize what we’ve introduced, we now have tools for analyzing:

• The number of computations needed to solve certain problems in a variety of ways (worst

case, average case, approximation).

• The amount of evidence needed to learn a concept (under the PAC setting).

• The number of experiences needed to effectively make good decisions (from RL).

Collectively, each of these points will let us clarify the picture of rationality further: agents must

not only solve problems given a reasonable computational budget, but are expected to learn good

55



concepts, and learn about their environment given finite experience and evidence – we can now

measure how well, in principle, an agent can do, subject to constraints on all of these components.
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Chapter 3

Bounded Rationality from

Reinforcement Learning

We now flesh out rationality through RL. In order to gain a foothold into mathematically quan-

tifying an agent’s capacity for the so called rationality required projects [41] including concept

formation, planning, and exploration. Using RL, we can inspect how different agents can learn,

explore, communicate, plan, and update their beliefs. Arguments for similar formalisms have been

raised by Ortega and Braun [116], Harb et al. [59], Zilberstein [177, 178] – see their work for further

support and background. For a recent summary of algorithmic perspectives on human decision

making, see Christian and Griffiths [29].

3.1 Physical Agents, Physical Limitations

Consider any physically instantiated agent. By definition of “physically instantiated”, the agent

must have physical form in some world it inhabits, and by “agency”, the agent must make decisions

57



by selecting from a collection of competing options. To be most useful in our study of rationality,

the properties that limit our agent-space must be those that necessarily obtain of all agents of

relevance, which we take to be: people, animals, and artificially intelligent agents such as robots.

In the extreme, consider the omniscient physical agent, which has all knowledge about the world

it inhabits. This is perhaps the most idealized a physical agent can be. How are we to restrict this

agent? The usual story of the ideal rational agent adds constraints of the kind discussed in the

previous chapter: closure under deduction, probabilistic coherence, and so on. Bounded rationality

suggests further imposing a mixture of constraints in the form of thinking time and space (perhaps

via complexity theory) and and lack of world-knowledge (perhaps via learning theory). RL serves as

a unifying formal language for describing the interplay of these considerations for physical agents.

We suppose the following properties must obtain of a physical agent:

Definition 6 (Physical Agent): A physical agent is any agent (an entity that chooses among

competing outcomes) that satisfies the following properties:

• Has finite computational constraints (both time and memory).

• Receives ego-centric, bandwidth-limited percepts of the world.

The above definition is not intended to be controversial—indeed, it is only given in order to

sharpen our inquiry. Moreover, it is based, in large part, on the original characterizations of

boundedly rational agents given by Simon, and of computationally rational agents by Gershman,

Horvitz, and Tenenbaum [49]. I defend each property in turn.

Finite computational constraints (in the form of time and memory) also come across as natural:

per the arguments raised previously, it is unhelpful to consider what an unbounded agent will do. It

is akin to considering the agent that can solve some arbitrarily difficult problem, perhaps even The
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Halting Problem. Given an oracle to the Halting Problem, many other undecidable problems can we

solved. In what sense is this consequence meaningful for understanding our own decision making?

It gets us no closer to understanding how we should be updating our beliefs or making decisions.

The problem is how to apply such constraints. As we explored in the previous section, some mixture

of computational complexity analysis seems appropriate, but there are many competing theories,

and it is not obvious how to choose between them.

Ego-Centric, Bandwidth-Limited Percepts is intended to force the agents we study to receive

evidence in a form that is compatible with our own sensory tools. Why? Well, again, if our interest

in rationality comes from trying to either give guidance on how to be rational or place blame for

invoking irrational belief forming methods, then it is unhelpful to do so from the perspective of an

entity that so blatantly violates the constraints we operate under. If rationality is about placing

blame – again, how are we to get a clear sense of what behavior is blameworthy if we don’t have

a (remotely) accurate model for describing rationality? As a consequence of this property, it is

implicit that our idealized rational agent must enjoy some form of physical existence, too. Then,

through limited-bandwidth perceptual tools, the agent can gather evidence about its current world,

but must do so by acting and observing its current surroundings. This is the critical departure. As

one might expect, the tools we built up in the background chapter will be immensely useful for

formalizing and studying this constraints. The PAC framework already told us how to relate the

amount of data received in a simplified setting to the generalizability of the concepts the agent can

learn. The PAC setting, though, is too simple – we really need an agent to perceive evidence as it

wanders. This is where RL will enter the picture.

The above two properties define what is meant by “physical constraints”; any agent that aims

to be rational must confront the fact that it has limited resources to reason with, and has limited
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sensory capacity to obtain evidence from its surroundings, by necessity. Other properties have been

proposed, such as anytime decision making [177], in which an agent must be ready to make a (pretty

good) decision at any time, even if it hasn’t yet finished any relevant calculations. Another fruitful

route has been to investigate metareasoning [62, 59, 178, 56], in which agents reason explicitly

about the cost of performing more computation. These considerations are extremely important,

but beyond the scope of our present discussion.

Let us begin with an example.

Example 7. As in the k-armed bandit problem, suppose an agent is presented with k boxes of toys.

The agent is asked whether there is a pink toy elephant in one of the boxes.

The agent is thus responsible for searching through the boxes to determine if the pink elephant

is present, and if so, which box it’s in.

Supposing there is exactly either one pink elephant or zero, there are precisely k + 1 competing

hypotheses to choose from. So, from the PAC result presented by Theorem 2.18, if we can change

the problem to ensure we collect evidence as in the PAC setting, we know that we will need at

most:
⎡⎢⎢⎢⎢⎢

log
∣H∣
δ

ε

⎤⎥⎥⎥⎥⎥
, (3.1)

samples from our boxes to determine whether the elephant is in a box with probability 1− δ. Here,

H is the size of the chosen hypothesis space, ε ∈ (0,1) is an approximation parameter, and δ ∈ (0,1)

is a confidence parameter.

However, our evidence is no longer independent and identically distributed. We have to actually

choose which boxes to search in, and how to search them; this is a necessary consequence of being
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a physical agent. So, the optimal strategy here, and even the worst case bound, is dramatically

altered from the case where our evidence is just presented to us in a straightforward way. This is

precisely why the ego-centricity is so important: our agent actually has to choose which evidence is

going to be most informative for updating beliefs. We must choose which evidence to collect in a

rational manner – given limited resources, our evidence collection process will dictate 1) how well

our beliefs match reality, and 2) how effectively we can make decisions (suppose we were granted

higher utility upon finding the elephant sooner). Our agent must actually play out the experience

of looking through box 1 for the elephant, then looking through box 2, and so on. Depending on

how much time the agent invested into box 1, it may again be rational the agent to revisit the box,

given memory constraints (“did I check box 1? Did I check it thoroughly enough?”). Moreover, as

the agent digs around in box 5, they may learn something about the contents of the other boxes:

there can be pink tigers! Or, perhaps there can be blue and red elephants, and they’re the size of

a peanut. This may change the agent’s strategy for choosing to go back to box 1 or not.

In the above example, we saw how an agent that receives data in an ego-centric way is faced

with a challenging belief formation problem. What would the ideally rational agent do? One

answer would be that it follows the ideal exploration strategy: in bandits, such a strategy is

known [53]. More generally however, we don’t yet know what such a strategy would look like. It

is unclear: the theory simply lacks the appropriate machinery to discuss hypothesis testing of this

form. Different evidence collection strategies will lead to different beliefs, given a resource budget:

once you see that the first box is all blue animals, containing no elephants, do you suppose each

box is color coordinated? Or animal coordinated? Suppose you find a toy elephant in box 3 the

size of a thimble – would this suggest that there may have been an elephant, smaller than what

you originally believed, in a box you already searched? This kind of belief updating is not well
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modeled by other theories.

RL is perfectly suited to study such problems. The k-armed bandit codifies a simplified version

of the above problem, which has led to a great deal of analysis and fruitful study [30, 53]. From

the bandit literature, we can state that, in a simplified version of the pink elephant problem, any

agent will need a certain number of rounds of looking through boxes in order to find the elephant.

We can define precisely the computational and statistical resources required to solve the elephant

problem, in general.

Suppose the other constraint now enters the picture: in addition to having to choose which

evidence to process, agents must also do so given only finite resources (in terms of computational

cycles and memory). As explored in Chapter 2, we have a variety of tools for describing such

constraints, though none are quite perfect. As we seek to characterize the ideal physical agent, we

will jointly limit its resources in addition to forcing its evidence to be perceived in an ego-centric,

bandwidth limited way, as discussed in the pink elephant example.

3.1.1 Characterizing the Ideal Practical Reasoner

So far we have clarified “realistic physical limitations”, and still require further clarity about “ca-

pacity to reason” and “idealized”.

Capacity to reason translates to an agent’s ability to make effective decisions. In the utility

maximization sense, an agent is said to reason well just when it does a good job at maximizing

utility. The major departure we have made so far is that the agent is uncertain about the nature

of the world: it doesn’t know the causal rules of the world, or the appropriate labels for different

objects. It must learn these facts during the course of its existence.

Our previous discussion about ego-centricity suggests the agent doesn’t necessarily know what is
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either feasible or desirable. This is precisely the formation offered by Reinforcement Learning: the

agent must learn about both what is feasible and what is desirable, all the while making decisions

to maximize utility. Agents must choose how to gain evidence so as to ensure they’re maximizing

their capacity to learn about their world. Thus, when we talk about an agent’s capacity to reason

in RL, we will typically talk about utility maximization. Fortunately, utility plays an explicit and

important role in the MDP formalism – an agent’s expected discounted reward is defined under a

fixed decision making strategy, π ∶ S → A, according to the Bellman Equation [12]:

V π(s) = R(s, π(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Immediate Reward

+

Discounted Expected Future Reward
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
γ ∑
s′∈S

T (s′ ∣ s, π(s))V π(s′) . (3.2)

Here, V denote the value of a state under a policy, π, which indicates a behavioral strategy for

every state (that is, π(s) outputs an action). R(s, π(s)) is the immeidate reward received by

taking the action π(s) in state s, γ ∈ [0,1) is a discount factor expressing an agent’s preference for

immediate rewards vs future rewards (the agent prefers immediate rewards as γ gets closer to 0),

and T (s′ ∣ s, π(s)) is the state transition function: when the agent follows π in state s, what world

state are they likely to end up in next?

This equation yields a simple recursive mechanism for computing the expected utility an agent

will receive for a given problem. Note that in order to compute the above function, we need to know

1) the behavior to be evaluated, π, 2) the true transition function describing the causal rules of the

MDP (T ), and 3) the reward function (R). If an agent knew these quantities, it could compute

the value of its current policy, and thereby improve it by searching for a better policy. The central

assumption, however, is that the agent doesn’t know R or T . Instead, the agent must determine

what is feasible (learning the causal rules of the world, T ), and what is desirable (learning the
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utility-filled states of the world, R), by wandering through the world and experimenting.

The job of any RL agent is to learn about R, T , and V as best as possible, so as to come up

with a decision making strategy π that maximizes V π in the states of relevance. This is precisely

how we will measure an agent’s capacity to reason.

To explore this point further, let us consider an extension of the pink elephant example:

Example 8. Now, instead of being presented k boxes, our agent is placed into a grid world, similar

to the Russell-Norvig grid from Figure 2.2. Consider the slightly more complicated grid pictured

in Figure 3.1. The agent is pictured as the blue triangle in the bottom left of the world, and is

searching for the star. The agent’s only sensor can determine whether the agent is currently in the

same location as the star or not, and can determine the name of the state it is currently in (that

is, it can learn whether it has been in the state before or not).

At the agent’s birth, we suppose it does not know about the structure of the grid. It must learn

about the structure by wandering around and learning the effects of its actions, similar to how we

learn to control our fingers to grasp complex objects [145].

What would the ideally rational agent do? Suppose the agent’s mission was to form perfect

beliefs about 1) how the world worked (what are the consequences of its actions in each cell?), and

to 2) find the location of the star.

As in the case of the pink elephant, the core challenge is that the agent must choose wisely as to

how it learns about its world. One option would be to act randomly for N action choices, then use

that information to learn. Based on the set of N experiences, an agent might get lucky and find

the star, or might learn that executing right tends to have a certain kind of effect. Alternatively,

an agent that decided to try left for all N actions would just run into the wall repeatedly and

learn very little about the world. So, different strategies for collecting evidence yield different
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possibilities.

As we saw in the first grid example the approach called R-Max did considerably better than Q-

Learning. The Q-Learning algorithm roughly tries to explore randomly, which leads to considerably

worse behavior. Conversely, R-Max picks which hypotheses to test efficiently, and can consequently

learn to make better decisions more accurately. At a high level, R-Max always assumes it is in a

world where there is some extremely high reward in every single state in the world. In this way, it

will always try to plan to get to states it has not yet seen (unless it can actually get a lot of reward

in its immediate vicinity), thereby encouraging exploration.

Figure 3.1: The Four Rooms grid world domain from [156]. The agent starts at the triangle and
receives +5 reward when it finds the star.

In the above example, each agent is responsible for both gathering evidence and making best

use of the available evidence to make good decisions. A good decision, with consideration of

the exploration problem, can be one that either explores effectively (so as to gather the right

information for later us) or one that exploits effectively (so as to take advantage of the information

already gathered). Further, any rational agent must make an appropriate trade-off in how much it
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explores or exploits. An agent that over-explores will waste valuable time not maximizing utility,

and will thus under perform. An agent that under-explores will settle with a decision strategy

that is sub-optimal relative to some as-of-yet undiscovered solution. This problem is core to any

pink-elephant like scenario.

Fortunately, the RL literature has developed concrete measures for evaluating the capacity of

an agent to effectively explore its environment. There are roughly two such measures, but both

target the same point:

1. Regret: The regret of an agent measures how much worse the agent is relative to the optimal

strategy (taking full advantage of perfect world-knowledge). So, for instance, if the optimal

strategy (assuming full knowledge of the world from the first time-step) yields a score of +5

in the grid example, then the regret of an agent is now much less than +5 the agent receives

after taking into account its exploration time. As with computational complexity, the focus is

again on orders of magnitude based on the problem size. In decision making, our problem size

can be cast in terms of quantities like the horizon of the problem, H (the number of decision

steps the agent can act for), and the size of the problem, measured in terms of the size of the

state-action space ∣S ∣ × ∣A∣. The lower bound on regret is known to be Ω(
√
H ∣S ∣∣A∣N) [119],

with N the number of time steps.

2. Sample complexity of RL: The sample complexity, like computational complexity, measures

the number of samples an agent need before it can act near-optimally with high probabil-

ity [79]. A long line of work has explored increasingly better sample bounds [80, 19, 157, 151,

152]. The Knows What It Knows (KWIK) framework extends sample complexity to capture

a more challenging learning objective that is well suited to RL, too [94].
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In either case, we gain, as with computational complexity, a formal measure for evaluating an

agents decision making strategy under realistic assumptions. It is important to note, however,

that both measures are limited to discrete and finite Markov models (MDPs, discussed previously).

Recent work has extended sample complexity to a more general class of decision problems [70],

suggesting that there are pathways to realizing similar bounds in the general sense.

3.2 Putting It All Together

Suppose we want to inspect a resource bounded agent A . Really, we want impose constraints of

a variety of kinds. The upshot of the theory we have introduced is that we have readily available

methods to define each of the above constraints:

• The agent can think for no more than N “steps” per decision.

→ Impose a computational complexity restriction on the agent’s available computing time,

per time-step.

• The agent can use no more than M bits for its memory at any given time.

→ Impose a space complexity restriction on the agent’s available computing memory, per

time-step.

• The agent has only partial knowledge of its world, as represented by its initial beliefs over

the world (MDP) it inhabits.

→ Suppose the agent has a prior on quantities of relevance, like the transition model of the

world (T ) or the value/utility of a state (V ). Or, even simpler, we can gift the agent with

partially accurate initial models, such as T̂ .
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In the end, questions about practical rationality are posed about a particular agent’s capacity

to solve different problems, subject to these constraints. I take the resulting account to serve as a

unified picture of resource-bounded practical rationality.
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Chapter 4

Concept Formation and Rationality

The main claim defended in this chapter is that bounded rationality is not only about elegant

symbol crunching, but also about choosing the right symbols so that symbol crunching is easy and

effective. By “symbol”, I will roughly mean “concept”.

What is a concept? I adopt Susan Carey’s view [22]: concepts are the atoms of thought. They

can make up beliefs, thoughts, and consist in mental representations. Beyond these large strokes, I

will remain agnostic to the precise character of concepts. If we take some view in the neighborhood

of Fodor’s Language of Thought hypothesis to be correct [44], then a concept is just an atom of the

language of thought. These might be the possible categories that we use to update and generalize

beliefs (such as “dog”, “sunny”, or “Tuesday”) or the properties we used to describe different

experiences or objects (“large”, “fun”). All that is really needed is that concepts factor into our

ways of breaking down and thinking about the world.

I will primarily focus on two special kinds of concepts: world-state concepts, that characterize

our surroundings (past, present, and future), and ego-centric behavioral concepts, that describe

what kinds of behaviors an individual agents is capable of.

69



For example, suppose you find yourself in a kitchen baking a delicious loaf of bread. Relevant

state concepts might consist in the way that you break down and organizes aspects of the kitchen:

cupboard, utensils, measurements, dish, surface, knife, and so on. They likely also describe the

current progress made on the dish; has the dough risen enough? is the oven heating? is the dough

too gooey? Action concepts describe the high level behaviors like “make the dough”, but also lower

level behaviors like “measure 1
4 teaspoon of vanilla extract”. In this example, one might see how

the wrong choice of concepts (of either kind) can prohibit effective baking. Going forward I will

call this first class of concepts state concepts, and the latter action concepts.

To leverage mathematical insights from learning theory, it will also be convenient if our treat-

ment of concept tracks (at least partially) the boolean functions learned in the PAC learning frame-

work described in Chapter 2: a function, c, that assigns entities in our domain into two groups (the

“has the property” and the “do not have the property”). Really, then, the boolean functions learned

in PAC learning are extensions: they divide a given domain into two sets of things. Of course the

concepts actually at play in human cognition are considerably more complex than these functions,

but it will be important to preserve some tracking between the two. For example, we make use

of “dough” as a concept that differentiates some objects from others. This can be spelled out in

terms of cognition, the phenomenology of experiencing kneading dough, and in terms of a function

c that labels images as containing dough or not containing dough. All of these approximate what is

meant by concept. It is both slightly remarkable and unsurprising that our culture, language, and

evolutionary lineage have all converged on concepts that support communication of our experience,

recollection of memories, accurate symbolic reasoning like complex math and predictions about our

future, as well as a fluid perception-control loop capable of supporting our many physical feats,

such as baking.
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Carballo [21] studies the utility of concepts for epistemic rationality, as opposed to practical

rationality, though many of the considerations are similar: Carballo’s main argument is that con-

cepts can do a better or worse job of naturally carving the world at its joints. I view our theories

as compatible: in practical rationality, a concept X is better than Y just if an agent with resource

constraints can make better decisions if thinking in terms of X as opposed to Y . The crux of

this argument says that without good concepts, resource bounded agents can’t plan well, or can’t

generalize well (concepts need to describe not just our experiences now, but ones we have yet to

encounter, too). Prior psychological studies suggest that the primary role of concepts is to support

good categorization [54, 126, 33, 112] and generalization [25], so much of what I argue here is not

novel. Further philosophical work explores the use of concepts, or their status in epistemology more

generally, such as Gardernfor’s conceptual spaces account [47], which also bears connection to AI

through induction [46]. Further work in AI has explored bounded rationality [176, 63], exploring

planning under resource constraints [14], metareasoning [64, 178, 56], or on construction of any-

time1 algorithms as a criteria for operational rationality [177]. The primary novelty in this work is

unifying aspects of these accounts (psychological, AI, and philosophical) through the role concepts

play in boundedly rational behavior.

4.1 Baking Concepts

Let us again turn to the baking example. This time, suppose Matt, a person who knows nothing

about kitchens, baking, or any other relevant concepts, is presented with a standard kitchen for

the first time. What might Matt need to know in order to bake a loaf of bread? Consider first

1An anytime algorithm is one that can always output a solution, even if the algorithm has not yet finished its
execution. Such a criteria is likely very important for practical models of behavior, as agents should always be able
to come up with a solution, even if its not the best one
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the rather extreme RL position; Matt knows nothing about the world and must learn by randomly

executing his most basic actions.2 Matt flails his arms around arbitrarily hoping to receive some

positive reward (which, in this case, is provided through machinery in his brain). Perhaps, given

enough time, bread will be made. However, this is clearly an undesirable path toward making

bread; it is just as likely the kitchen will catch on fire or Matt will injure himself. What, then, can

we endow Matt with in order to speed the process, and make him a more capable baker? I take

the natural response to be: an appropriately useful model of the contents and causal rules of the

kitchen. Matt needs to know: What is flour? What is water? Where does water come from in

the kitchen? What is an oven? What is temperature? These (and others) are roughly the state

concepts needed for baking.

Many of these concepts are necessary in order to even get off the ground with baking. But, I

here aim for a stronger point still: there is additional gain to be made by honing concepts further

beyond this initial set. There are two ways in which state concepts can be improved in order to

make decision making more effect: state concepts can generalize to enhance learnability in unseen

situations, and state concepts that make planning easier, by allowing agents to reason with a more

compact model of relevant states of affairs.

Consider the fact that even an experienced baker will never have baked under precisely the

same conditions twice – ingredients and dates change, hardware erodes, and so on (perhaps the

baker finds themselves in a new kitchen!). We thus require that these state concepts are sufficient

for translating across different experiences along many different dimensions. Even if they don’t

afford instantaneous perfect decision making, they do need to support the flexibility we expect of

a competent baker (and decision making more generally). If a master baker were to look at a bowl

2I will occasionally use the term “basic” or “primitive” action to denote the lowest level of muscle/motor control
actions available to an agent, like shifting joints/fingers.
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and say, “Ah, I’ve never seen a bowl of that diameter! I can’t bake with this”, we would likely be

reluctant to call them a master (or perhaps call them a bit too picky in their choice of bowls). It

is hard to even take seriously the notion that a baker wouldn’t know how to use a new bowl. In

this sense, we expect our state concepts to will generalize well across the experiences we encounter.

We require that we can react to dynamic and as-of-yet unseen phenomena. This is the first sense

in which state concepts can be improved over their usual bare necessities.

Second, state concepts can afford quick planning. Planning roughly captures the process of

deliberating over sequences of possible behaviors and choosing the most desirable of such possible

sequences. The right state concepts can ensure that each step of the plan makes substantive progress

toward overall progress; planning at the level of “what step of the recipe am I at?”, as opposed to,

“how many more muscle twitches do I need to execute in order to knead the dough?” can ensure

faster planning. In this sense, it is hard to imagine planning without also considering an agent’s

action concepts too – plans deal explicitly in action. The idea is roughly the same. With baking,

thinking through the sequences of actions Matt might take in order to make the dough, for instance,

is easier if the right state-action concepts are chosen. Faster planning means that any agent with

resource constraints can actually do more planning with the same resources. And, more planning

(usually) means better decisions.

As suggested, the same reasoning that underlies the need for good state concepts (better gen-

eralization, faster planning) supports the need for good action concepts. Now, let us dive in more

deeply.
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4.2 A Closer Look at Good State-Action Concepts

We now turn to a more concrete example than baking to showcase precisely what we mean by

generalizability and fast planning.

Consider the simple navigation tasks pictured in Figure 4.1. On the left we see two original

problems: the agent must learn enough about its world so as to navigate to the top row. In the

bottom example, the agent must also reason to find its way through the narrow doorway shown in

blue. Each of the two problems are modeled as Markov Decision Processes (MDPs): the circles in

the image represent states of the world, and the edges represent the consequences of the agent’s

actions in each state. For a recap of MDPs, see Chapter 2.5.

In this example, concepts are how the agent chooses to distinguish between states of the world

and its own actions. In the RL literature, this is typically called state abstraction [38, 5, 73, 93].

On the right two figures, we find a change of state representation (Figure 5.1b) that reduces the

number of states in the world, and a change of behavior representation that adds new long horizon

actions to the agents model of the problem (Figure 4.1d). The idea of the example is this: imagine

yourself in a long hallway. Spending precious mental resources on parsing every tiny change in the

underlying world as a novel state will consume resources better left for other processing. Thus,

making use of a compact state representation that still tracks with the actual goings on of the

world leaves agents more free to perform more given their budgets. It is in this sense that choosing

the right concepts underlies rational behavior. If an agent did not choose the appropriate state

or behavior representation, then the agent’s decision making will be worse than it could be, even

with the same budget. If an agent can decompose its decision problems in the right way, problem

solving becomes easier, so it can squeeze more value out of each mental calculation used to solve

a problem. Of course, I haven’t yet stated why decision making gets better under these concepts.
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We discuss this point now.

Let us begin by returning to Simon’s (and Von Neumman/Morgenstern’s) chess example. Sup-

pose a chess playing agent can only make a number of queries to the tree of possible games in some

initial “training” phase, or perhaps has had the pleasure of playing some number of games, N , and

must use these experiences to guide its play in some new N + 1st game.

Now, this agent finds itself in a new board configuration it has never before seen during any of

its prior games. How should the agent respond? One naive route is to charge ahead and assume

that all new outcomes may be equally fruitful, so every move should be treated equivalently until

more is known about them. However, surely this route does not take full advantage of the evidence

gathered from prior games. In the same way that a chef in a new kitchen can transfer their beliefs

and insights from prior experiences, we expect a chess player to do the same.

How, then, should the agent take into account knowledge about different board configurations

and different board games, now that it finds itself in a new board layout? This is precisely the clas-

sical problem of generalization studied by supervised learning, as in learning theory. Moreover, this

is effectively the classical problem of induction [65]. How are agents supposed to apply knowledge

from past experiences to a new, similar experience?

The psychologist Roger Shepard provides one answer [135] which he coins the “Universal Law

of Generalization”. A critical aspect of this law is the notion of psychological space, which defines

a landscape of entities that a given reasoner holds in its psychological focus [134? ]. This space is

intended to capture how we as agents break apart our experiences and stimuli – a beach ball is likely

to be closer to a volleyball in psychological space than a beach ball is to a tomato (unless, perhaps,

the beach ball is bright red). According to Shepard’s view, our ability to generalize across similar

experiences can be explained based on an inverse power law of the distance between experiences
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Figure 4.1: Two different navigation tasks (top and bottom) with different state (top right) and
action (bottom right) concepts that can significantly decrease the complexity of the problem.
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in psychological space. Recent work by Sims [139, 140] extends Shepards program via information

theory, giving a similar perspective to the one we advocate for in the next chapter.

Returning to our chess example, Shepard would suggest that, if we had already pre-determined

the appropriate psychological space for reasoning about board layouts, then we would be able

to apply our knowledge of similar board layouts to this one. In essence: if we found ourselves

in a similar position before, and have knowledge of what constitutes a good move in this prior

experience, we can export our knowledge directly to our new found layout. This is rather intuitive,

but is missing several critical pieces, the most glaring of which is where psychological space comes

from. If we can, however, get our hands on the right notion of space, here, then we can generalize

effectively.

4.2.1 Concepts and Generalization

Surely there exists some decomposition of chess board space such that every board with optimal

move ai is grouped near one another. In fact, we can prove this:

Lemma 1. There exists a representation of chess boards such that boards that are said to be close

to one another are guaranteed to have the same optimal move.

More formally, let S denote the space of possible chess board layouts. Let A denote the possible

moves for a particular agent. Let d ∶ S × S → [0,1] define a measure on state pairs. Then, there

exists a function, φ ∶ S → Sφ, that induces a new state space Sφ (the “psychological space”) such

that:

∀s∈S ∶ min
s′∶s′≠s

d(φ(s), φ(s′)) = 0 AND π∗(φ(s)) = π∗(φ(s′)). (4.1)
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Proof. Consider the π∗-irrelevance class of functions, φ, from Li et al. [93], which we here denote

Φπ∗ . That is, for any φ ∈ Φπ∗ , for any two board layouts s1 and s2:

φ(s1) = φ(s2) Ô⇒ π∗(s1) = π∗(s2). (4.2)

From the Bellman Equation, we know that there exists at least one optimal behavioral policy

π∗ ∈ Π. That is, π∗ is a deterministic mapping from a given state s ∈ S to a single action a ∈ A.

Thus, consider the maximally compressing element φ∗, that groups all possible states together

such that the antecedent from Equation 4.2 is true:

φ∗(s1) = φ∗(s2)⇐⇒ π∗(s1) = π∗(s2). (4.3)

Now consider the trivial distance function, defined over the “psychological” state space, for any

function φ:

d(φ(s1), φ(s2)) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 φ(s1) = φ(s2),

1 otherwise.

(4.4)

Thus, the function d paired with the function φ∗ ensures that, for any two board layouts, s1 and

s2, their psychological distance is 0 just if their optimal action is the same. This concludes the

proof.

Intuitively, the above lemma just says that we can always group our chess boards into different

regions of mental space based on what their optimal action is. In essence this is the π∗-irrelevance

abstraction from Li et al. [93]. Using this abstraction, when we go to evaluate what to do in a

particular region, we just have to check what we did in similar (or identical) states.
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Naturally this is problematic, as having such a function is a sufficient condition for completely

solving chess. Still, the takeaway is this: for one such kind of decision making, the “psychological

space” that is chosen to think about the particular problem can determine whether a strategy

for generalization is effective. In some actual cases, like chess, there are better and worse repre-

sentations that are in fact feasible to latch on to; this is in large part the aim of representation

learning [13] that constitutes deep learning [90].

For example, using learning theory, we can rigorously establish a representation’s capacity to

generalize over a domain. The same general claim holds in the case of planning: certain concepts

are better for ensuring fast, near-optimal planning.

4.2.2 Concepts and Planning

Planning, at its core, defines the problem of deliberating over possible sequences of behaviors to

come up with an appropriate action to take. The problem is of interest in both the psychology

community [110] and to artificial intelligence [114, 61, 86, 88, 89].

In general the planning problem is as follows: suppose an agent must choose action a1 or a2.

As in the case of Matt baking in the kitchen, decisions have not just immediate consequences but

long term consequences, too. Often the objective is to determine whether the utility, U ∶ A→ R, of

action a1 is higher than that of a2, denoted U(a1) > U(a2) or U(a1) ≤ U(a2). One popular approach

involves Monte Carlo approximation: suppose we are given a model T̂ that can accurately predict

the next state of the world st+1 given the previous state st and action a, denoted T̂ (st+1 ∣ st, a). In

a game of chess, the rules of the game define the true model T , and any agent will approximate

it. In a game like chess where all rules are known, usually T̂ = T . Assuming our agent has

an accurate forward predictive model (T̂ ≈ T ) Monte Carlo approximation means roughly the
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following: simulate choosing some action a1, then simulate acting randomly (or behave according

to a plan) for some amount of time. How good is the overall outcome? Then, repeat this simulated

experiment some huge number of times for each action a1 and a2. If repeated enough, our agent

can get a reasonable estimate of the overall long term utility of each action, and use these estimates

to determine whether U(a1) ≥ U(a2) or U(a1) < U(a2). Indeed, such methods served as the core

of the recent Go AI that achieved world champion level play , AlphaGo [136], and its predecessor,

AlphaZero [137].

Planning is known to take serious computational work. The most relevant analysis of the

difficulty of planning treats it as part of the same MDP formalism as RL; in this case, planning is

known to be roughly O(∣S∣2∣A∣∣T ∣) in the worst case, with ∣S∣ the number of states in the world,

and ∣A∣ the number of actions in the worst case, and ∣T ∣ is the number of bits needed to write

down the environment’s true forward model[97]. So, in the worst case, an agent needs this much

computing time in order to come up with a good plan. Returning to our discussion of computational

complexity, agents almost certainly don’t need to worry about the full blown worst case analysis;

the shortcomings of worst-case analysis from Chapter 2 are particularly poignant here. Solving

the full planning problem would mean determining perfectly optimal behavior in every state of the

world, even those that are unlikely to ever be reached.

Instead, we can consider the more practical question: if an agent has N seconds (or some limit

on memory) to come up with a plan, how good can the plan be? In RL, we can formalize this in

terms of behavioral rollouts or simulations. Returning to the grid problems in Figure 5.1a, suppose

an agent has a model of the world dynamics, T̂ , such that, for a given s, a, the agent can roughly

predict which state it will occupy next, s′. Moreover we might assume this model is a sufficiently

good model. That is, for every state of the world, the agent’s prediction of what happens an action
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is executed is very close to the true model:

max
s,a,s′

∣T (s′ ∣ s, a) − T̂ (s′ ∣ s, a)∣ ≤ ε. (4.5)

But, this is already problematic. Our agent must now retain a model of at least ∣S∣2∣A∣ parameter

in its head for the above property to be true. No resource bounded agent could model anything

remotely like this function. Things get even more complicated if the model is actually stochastic,

as in games involving randomness like poker. This is simply further support for the use of good

concepts: if an agent can only store K things in memory, then the function T̂ better take less than

K parameters to store. To do so, the agent should form more succinct characterizations of state

and action that let the agent instead reason using T̂φ, an abstract predictive model of the world.

We will develop an account that supports such reasoning shortly.

But suppose our agent has unlimited memory (or that K is set so high so as to impose no real

restriction). How might the agent use T̂ to come up with a plan? Well, as suggested previously, the

agent can use rollouts. Using rollouts for planning is effectively how Bill determined which airline

to use. The agent closes its eyes in state s and simulates what would happen if it were to execute

action a1. Then, the agent simulates acting randomly for some number of time steps, leading to the

eventual state sh. The agent then evaluates the total utility of the path taken: s1, . . . , s
(1)
h . Then,

it runs the same mental experiment again, this time executing a2, leading to s1, . . . , s
(2)
h . The agent

can repeat this process until it exhausts its computational budget – the action that received the

highest simulated utility. This is the main idea behind tree-based planning methods, like the now

popularized Monte Carlo Tree Search (MCTS) [34]. MCTS is a friendly formalism for planning in

our circumstances since we can directly control the amount of computation required. An agent can
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Figure 4.2: A comparison of the search trees used with different concepts for the grid problem in
Figures 4.1c and 4.1d. In both cases, the agent plans forward from its start state shown in tan. On
the left, the agent reasons about how its actions change the state of the world; it can first move
to either the state above or state to the left. The full search tree is not pictured for brevity. On
the right, we see the search tree formed if the agent has access to the action concepts that move it
directly to the doorway (“move to the door”), which is clearly considerably more compact.

run R independent rollouts out to D depth in R ⋅D computations. We can also get a sense of how

many rollouts are needed so that Û(s, a), the agents approximation of the utility of s in a based

on the rollouts, well approximates U(s, a), the actual utility.

Naively though, for this to work, agents would need far too many rollouts. Most agents have

such a large state-action space that no reasonable budget would suffice. But, certain kinds of rep-

resentations can make this dramatically faster; this is the main idea behind our present argument.

With a more succinct state-action space, with the same computational budget, an

agent can run more rollouts deeper into the future, thereby getting a more accurate

estimate Û(s, a).

For visual support for this idea, consider the search trees pictured in Figure 4.2. With some

concepts, planning becomes more tractable. For further background and support in this direction,

see the work of Zilberstein [176], Bernstein et al. [14], Zilberstein [177] and Harb et al. [59].

This is the sense in which state and action concepts directly impact an agent’s ability to plan
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efficiently, subject to resource constraints. To conclude: if an agent A, does not make use of such

state-action concepts with resource bound K, then there exists another agent, A+ that does make

use of state-action concepts with resource bound K that always makes better decisions.

Moreover, we can combine the benefits of concepts that generalize and concepts for planning.

Ideally, this would give us a representation of world state and action such that our model of the world

(T ) is compact, so planning is easy, and flexible, so that agents can adapt to new situations robustly.

We already saw a notion of model compactness: the total number of s, a, s′ triples the agent needs

to remember can be smaller as the state representation becomes more parsimonious. What might

it mean for this function to generalize? Intuitively, it means that the agent is equipped to make

predictions about unseen world states. Matt, for instance, needs to reason about the consequences

of mixing different baked ingredients together. This is still possible despite Matt never having

actually used the exact kitchen of interest, to the precise destinations of interest, on this exact day

at some point in his past. Instead, he is generalizing knowledge by making predictions based on

similar experiences. So, imagine our agent has never before seen some state s̃. It must consider

the prediction T (s̃′ ∣ s̃), for each action a and each possible next state of the world s̃′. How could

an agent learn such a function? We saw in PAC learning how algorithms can learn, with high

confidence, good approximations of functions based on finite data. We can exploit the same idea

here: the agent sees some number of similar experiences (so, choices of airline), and uses that

information to generalize to this unseen state. The remarkable thing is that again, the difficulty of

PAC learning this function T (s′ ∣ s, a) is going to depend on the size of the hypothesis space. In the

simple case of a deterministic forward predictive model, there are ∣S∣2∣A∣ possible functions. With a

smaller state-action space, learning this function again becomes easier. So: not only can the agent

plan more with new concepts, it can learn the appropriate predictive model faster, too. In a similar
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vein, Harb et al. [58, 59] suggest that agents should adopt action concepts that make planning and

learning simpler. Harb et al. define a new objective for finding action concepts subject to these

considerations (often called “options”, based on the formalism by Sutton et al. [156]), which leads

to an algorithm for finding good action concepts.

The argument so far established suggests that there is a set of state-action concepts at the

frontier of boundedly rational behavior–those representations that ensure no such other agent A+

exists that dominates its behavior. In the next chapter, I argue that these properties define a

notion of “good concepts” (and in turn give us a means of comparing concept sets) in the context

of practical rationality.

4.2.3 Limitations

First, I consider a few natural counter arguments to those just presented.

1: Fast but useless planning In the previous section we saw how a smaller state space can lead

to more planning in the same computational budget. But, there is no free lunch: surely we must

lose something by diminishing our state representation! Most significantly, there is no guarantee

that the plans we consider are actually reasonable in the sense of promoting high utility decision

making. Indeed, the criteria we articulated suggests that we should just collapse the entire world

into a single state! Planning is then maximally efficient.

Response: This is a crucial point. Not all smaller sets of concepts are created equal; we need

those that are small (to make planning fast), generalize well (to work in a variety of domains)

and useful (to preserve prediction of utility). Simultaneously satisfying these three criteria is a

challenge, and I have here primarily motivated the first two properties. However, this third need

not be forgotten. Indeed, in the next chapter, I will sketch a theory that tries to simultaneously
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satisfy all three properties. It is worth nothing, though, that there do exist methods of state (and

action) representation that can still preserve utility [123, 93, 2].

2: What about other concepts? I began this argument by suggesting a decomposition of

concept space into state and action representations, but surely this is an inadequate characterization

of the conceptual landscape people actual rely on for decision making. What about the contents

of introspection [148]? The contents of our introspection (or the vehicle by which we introspect)

is likely not describable in terms of language about states or actions. Further, we have here been

making the assumption that there is a true underlying world state, s, and that the agent observes

it–in reality, agents just receive observations based on world state. It is not so clear that our

concepts are describing world “state”, so much as appearance properties of our observations.

Response: These are valid concerns; I here rely on the two simplifying (but wrong) assumptions

that 1) concepts are fully exhausted by state-concepts and action-concepts, and that 2) agents

observe s, not an observable that results from s. I take initial insights developed under these

restrictions to be useful for a more fleshed out theory that relaxes these two key assumptions.
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Chapter 5

A Compression-Based Theory of

Rational Concept Formation

We have so far established two claims. First, that RL can give formal character to the problems

faced by boundedly rational agents, and second, that talk of a resource-constrained agent’s ratio-

nality must rely on the agent’s concepts. We have yet to see, however, what it might look like for an

agent to be effective in their choice of concepts. This chapter attends to this question. Specifically,

like Carballo [21], I ask: “what constitutes a good choice of concepts”? Carballo’s main goal is

to address this question from the perspective of epistemic rationality. My goal is to answer this

question from the perspective of practical rationality, cached out in terms of utility maximization

in reinforcement learning.

To this end I will develop a theory of what makes a concept better than another. In principle

agents are said to be rational (with respect to their choice of concepts) just when they develop

mechanisms for adopting concepts that are better than all others. It is an open (and important)

empirical question as to whether or not such an exercise is feasible for most people; surely our
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concepts develop over time as we attend school, learn about the world, and grow. But, it is

unlikely that we have control of the nature of the concepts we use through introspection alone. It

is hard to imagine that on reflection I can deliberate and actively decide to reason in terms of a

particular new choice of concepts. Perhaps with the right training and strategy such a practice is

possible, but again I leave this as an open empirical matter.

All that I set out to establish here is this: if an agent did have the ability to adapt its concepts,

what might it look like for an agent to be justified in choosing new concepts?

We can answer this question by drawing on the technical machinery of RL. Like decision theory,

agents that are effective at RL do a better job of maximizing utility. This same objective will lead us

to an account of how agents can come up with concepts: those that support high quality sequential

decision making.1

In general, what can we expect from our choice of concepts? Our answer emerged last chapter:

fast, high quality planning, and robust generalization across different states of affairs and envi-

ronments. This is not an exhaustive list. We regularly make use of concepts in order to learn

lessons from our teachers and peers, to communicate our experiences, ask questions, and organize

our daily lives [22]. Indeed, under resource constraints, our concepts are likely to be responsible

for supporting many of these practices efficiently. I defer discussion of these properties and instead

only focus on planning and generalization, as they are of sufficient interest for the argument to be

useful. Since we have here restricted the scope of “concept” to state-concepts and action-concepts,

we can rephrase our more general line of inquiry about concepts into something more focused.

We ask: how can an agent choose its state and action concepts so as to support rational decision

making, subject to resource constraints?

1This question is often studied in nearby learning settings such as representation learning [13] as studied in
unsupervised [26], supervised learning [163], and even in “deep” RL [108].
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By “choose”, we will mean that the approach for reasoning with state & action concepts can

adequately order the utility of concept sets C1 and C2, for a given agent and the problems the

agent faces. For example, consider two agents, A1 and A2. They both live in the same world, and

have roughly the same goals and history. How might we compare the concept sets of these two

agents? In our baking example from the previous chapter, we said an agent would need a variety

of different concepts in order to bake a loaf of bread. Surely many are needed, like the concept of

dough, and “to knead”. But what might it look like for a set of concepts to go beyond the bare

necessities?

Before diving in, it makes sense to fix other properties of our agents, such as the stream of

evidence they might go on to collect. In machine learning this is often referred to as certainty

equivalence [69], and really just amounts to making sure we only vary the quantity of interest. For

our present purposes, certainty equivalence will imply that agents given some data will act well

according to the model they form based on that data. If we are baking, this just means that the

agents choice of how to think about the kitchen will be informed by the same set of experiences

(so: we might suppose our agents have each baked the same five cakes previously).

Recall that in RL, environments are usually assumed to be Markov Decision Processes (MDPs).

For clarity, I here briefly review MDPs and related terminology; for more details, see Chapter 2

or Puterman [122].
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Definition 7 (Markov Decision Process (MDP)): A Markov Decision Process (MDP) is a

five tuple:

• S: a set of states describing the possible configurations of the world.

• A: a set of actions, describing the possible choices available to an agent.

• R ∶ S ×A→ R: a reward function, describing the task to the agent.

• T ∶ S ×A → Pr(S)): the transition function, which denotes the probability of arriving in

the next state of the world after an action is executed in the current state.

• γ ∈ [0,1): a discount factor, indicating an agent’s relative preference between near-term

and long-term rewards. As γ gets closer to 0, agents prefer near term reward more.

The “Markov” in MDP indicates that the transition function, T , and reward function, R, both

only depend on the current state of the world (and action), and not the full state history. So:

Pr(st+1 ∣ st, at) = Pr(st+1 ∣ s1, a1, . . . , st, at). (5.1)

R(st, at) = R(s1, a1, . . . , st, at). (5.2)

In short: we can predict the next state distribution and next reward from just the current state and

action. This is incredibly helpful for simplifying analysis. Moreover, if any problem is not Markov,

we can always just roll the last k steps of the world into the state representation, thereby yielding

a Markov model.

So, when we talk about certainty equivalence, we mean that different agents estimates of T and

R will be the same, given the same data set. In this way, we make the default assumption that
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each agent will be rational according to whatever evidence it has gathered so far, given the resource

constraints imposed, and given its concepts. This lets us ensure that the only free variables in the

decision making processes involved are (1) the strategy the agents use to explore its environment,

and (2) the state-action representations at play. This chapter is focused on (2), but let us quickly

say a few words about (1).

Exploration is an active area of research, dating back to Thompson [160] and Bush and Mosteller

[20], who introduced the first analysis of what is now known as the k-armed bandit problem or hy-

pothesis selection problem. Exploration is a fundamental challenge facing any agent whose decisions

effect their environment: learning about one’s world (both the causal rules and the whereabouts of

utility) while trying to maximize utility in that world is challenging. The key point of exploration

is that agents do not get to observe the counterfactual of what would happened had they chosen a

different course of action. So, it is hard to know whether the chosen behavior is a good one. I here

refer the reader to recent approaches in exploration, such as Thompson sampling [24], Bayesian

methods [120, 8], and approaches based on being optimistic in the face of uncertainty [68, 19].

Largely, though, exploration represents a major open question.

I speculate, too, that appropriate concept choice is needed for a truly general and effective

exploration strategy. How does an agent know which experiments to conduct to learn about its

environment? Per the “scientist in the crib” theory advanced by Gopnik et al. [55], infants conduct

experiments in their world to falsify (or find support for) different theories. But which experiments

should infants (and agents more generally) conduct in order to learn the most about their world?

This is, in essence, just a rephrasing of the exploration problem. To choose among experiments,

agents again ought to be equipped with appropriate concepts–how am I to know about what could be

inside of a cupboard, without first having an appropriate concept of “cupboard” and the “inside of”
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relation or “hollow” property? Choosing which questions to ask about your world in order to learn

the right things about your world is difficult, and something children seem to do remarkably well.

Exploration is still entirely unsolved, however, and I don’t claim to be contributing progress to its

solution. I refer the reader to recent work in RL that suggests exploration and state representation

may be connected [158].

For these reasons, we henceforth remain agnostic to approaches exploration as well. Therefore,

we restate our dilemma, supposing exploration is also controlled for across agents: all agents explore

in the same manner, and make the same (optimal) use of the given statistics. Then, we ask, what

is the best choice of state and action concepts? “Best” here means “with the same resource budget,

comes up with better decisions, as measured by expected utility.”

The existence of such a general set of best concepts should not be taken as a priori. Without

reaching into the world and collecting some evidence, no state-action concept choice can dominate

all others. In other words, a good state-action concept choice must depend on the actual problems

and environments to be encountered by the agent that will use the concepts.

Suppose for a moment this is not the case. Then there is one concept choice, C∗, that is better

than all others for every environment subject to the resource constraints on the size of the concepts:

∣C∗∣ ≤ k. But surely this can’t be the case. Suppose we inspect an environment E. Any information

contained in the concept set C∗ that is responsible for making good decisions in any environment

other than E could be directed toward improving learning on E. That is, we can construct a

new concept set, C∗
1 , that contains all of the useful information from C∗ for learning in E, and

remove anything else. Then, with the remaining space, we can add additional conceptual support

that enhances the agent’s learning on E. In this way, we can launch a No Free Lunch argument

about the quality of the chosen concepts [175]. The result is that concepts must be defined in a
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domain-dependent way if they are to be good ones.

Our objective is then clear: to introduce a theory that can distinguish good state and action

concepts from bad ones, where “good” means the concepts maximize the potential of an agent to

make good decisions.

5.1 State and Action Concepts and Decision Making

Let us start with some intuition. Suppose you find yourself in a hallway. You look around, and

notice a door at the end. Based solely on this information, which aspects of the hallway will take

purchase on aspects of your representation of the situation? Psychological theories differ on which

characteristics our cognitive representations pick up on, and further which properties we become

aware of. Moreover, many aspects play into this processing: for instance, Li and Durgin [95]

provide concrete evidence that people tend to poorly estimate certain quantities in our immediate

environment (in this case, people tend to underestimate the slope of a hill in front of us). Even

more peculiar, Bhalla and Proffitt [15] present evidence that people actually overestimate the incline

of hills when they wear a heavy backpack. This view that “cognition impacts perception” is not

without controversy, however—see Durgin et al. [39], Firestone and Scholl [43] for more detail.

However, surely some choices of concepts are better than others. Using the tools of learning

theory, I will next show how to say something concrete about how different state-action concepts

will effect learning difficulty, which brings us to our first point of the theory:

Good Concepts means Quick Learning: Agents should seek out concepts that make learning

efficient.
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If agents already knew everything about their environment, the above point would be moot.

But, in the realistic case, no agent knows everything about its environment.

One might ask how we might measure learning efficiency. In the previous chapter, we introduced

precisely the tool for this job: sample complexity.

5.1.1 Concepts Can Lower Sample Complexity

Recall that in the general sense of PAC learning, an agent seeks to choose a hypothesis ĥ among

a set of competing alternatives H, that best explain the data. For our baking example, we’d like

agents to decompose kitchens into the right fragments so as to make learning to use a new kitchen,

or bake a new recipe, simple.

In the context of MDPs, the concept space we consider will directly define an agent’s effective-

ness. As a reminder, strategies for RL fall into one of three categories:

• Model-Based: The agent tries to learn R and T , which it can then use to plan by simulating

based on its approximate model (as in R-Max).

→ Loosely, an agent tries to understand its world first, and then reason using this under-

standing to come up with behavior.

• Value-Based: The agent tries to learn V or Q directly, which are themselves sufficient for

producing optimal behavior.

→ The agent learns to be reactive: when presented with two competing actions, the agent

has developed an instinct that one tends to be better by some amount of utility (but may

not know why they think that).

• Policy-Based: The agent tries to learn π∗ directly, which itself encodes behavior.
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→ The agent against follows instinct to take action (but doesn’t necessary know the utility

of the chosen action compared to others).

Note that value-based and policy-based methods are often grouped together under the name

“model-free” methods. These three methods roughly cover the space of approaches to RL.

It is useful to consider this space, as we would like to inspect how concept choice will affect

different strategies. Regardless of choice of these three strategies, we will reach the following

conclusion: an appropriately compact concept set makes learning faster, since any agent has fewer

hypotheses to search through. I next present a more technical version of this argument in the

language of the PAC framework. However, note that this is a specific instance of the more general

principle.

5.1.2 A Concrete Case

Consider again the hallway pictured in Figure 5.1. We see the original problem contains 23 states

and 4 actions, while the variant with new state concepts has only 8 states, and 2 actions per state.

So, for any of the functions the agent might want to learn (policies, transition models, and so on),

there are simply fewer of them to consider.

Let us consider the class of model-based approaches to RL, in which the agent does its best

to learn R and T , and use those to do forward planning. In other words, the agent sets out to

learn a predictive model of its environment: given that the world looks like such-and-such, and I

act according to this behavior, my goal is to predict how rewarding the next state of the world will

be, and predict what the next state of the world will be. By the reasoning we have so far laid out,

an agent will make these predictions in terms of its state and action concepts. What state comes

next? It depends on how the agent represents states. What will the world look like after an agent
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Figure 5.1: Recall again the distillation of a hallway (left) into a long skinny problem (right).

executes one of its available actions? It depends on how the agent defines its action concepts. As

I will next show, if the agent is learning with a more compact set of state-action concepts, R and

T are actually easier to learn.

In the context of the hallway, a choice of state-action concepts restricts the hypothesis class

over reward functions from ∣HR∣ = ∣S ∣× ∣A∣∗2 = 184, since each state-action pair can yield either 0 or

1 reward. For simplicity, let us instead restrict our attention to deterministic transition functions,

thus inducing a hypothesis class of ∣HT ∣ = ∣S ∣2 × ∣A∣ = 2116.2

However, using the appropriate state and action concepts, we can instantly lower the size of

these two classes. In Figure 5.1, with the new state representation on the right, the hypothesis

sizes now reduce to ∣HφR∣ = ∣Sφ∣ × ∣A∣ ∗ 2 = 64, and ∣HφT ∣ = ∣Sφ∣2 × ∣A∣ = 256. Clearly, the hypothesis

spaces are now smaller.

Recall that we have assumed our agents all use the same exploration strategy. If we make the

2If we suppose the transition model can be an arbitrary probability mass function over next states, then there
are infinitely many hypotheses, so we would require a more complex measure (like the VC-Dimension or Rademacher
Complexity) to evaluate the complexity at play.
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further (unrealistic!) assumption that the agent’s experiences are all sampled independently, then

by a straightforward application of Theorem 2.18, we know an agent can PAC learn T and R with:

⎡⎢⎢⎢⎢⎢⎢

log
∣HφR∣
δ

ε

⎤⎥⎥⎥⎥⎥⎥
= ⌈

log 64
δ

ε
⌉ , (5.3)

⎡⎢⎢⎢⎢⎢⎢

log
∣HφT ∣
δ

ε

⎤⎥⎥⎥⎥⎥⎥
= ⌈

log 256
δ

ε
⌉ , (5.4)

samples, for our chosen accuracy and confidence parameters ε, δ.

For example, set ε and δ both to 0.05. Then, by using the smaller state and action concepts,

we find agents with a difference in sample complexity of:

Sample Complexity(φ,R) ≤ ⌈
log 64

.05

.05
⌉ ≈ 2400, Sample Complexity(R) ≤ ⌈

log 184
.05

.05
⌉ ≈ 3010,

Sample Complexity(φ,T ) ≤ ⌈
log 256

.05

.05
⌉ ≈ 3200, Sample Complexity(T ) ≤ ⌈

log 2116
.05

.05
⌉ ≈ 4420.

In effect, we can shave off about 700 samples to PAC learn the reward function and over 1000

samples to PAC learn the transition function for any MDP (under the assumptions made above).

Why does shaving off samples matter here? Well, this translates directly to the amount of

evidence an agent needs in order to retain a confident estimate of facts about the world. “Confi-

dence” here is measured according to the PAC parameters, ε and δ, denoting the tolerable error

(ε) and confidence (δ). The takeaway then is that an agent with better state and action concepts

can actually acquire PAC-like knowledge of quantities that are sufficient for making high quality

decisions.

To complete the argument, note that a PAC learned reward and transition function are in fact

sufficient for supporting high quality utility maximization [19, 68]. In some sense this is the best
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a resource bounded agent can hope to do, since any practical agent will inevitably live in a finite

data regime and so cannot hope to learn T̂ that is equivalent to the true world dynamics T .

In fact, the same exact argument goes through for the other forms of learning. If an agent is

instead trying to learn a value/utility function directly, the same reasoning holds: learning in a

more abstract way means there are less hypotheses to search through, and so, it is easier to falsify

a larger fraction of them with the same body of evidence.

Of course, in the real world, our experiences aren’t so well behaved as to show up independently.

They are connected: when we choose to take a job in Seattle instead of New York, we will never

know what it might have looked like to accept the New York position. The above results violate

this assumption. It turns out this isn’t so problematic on the technical side: we can turn to more

complicated measures, like Regret [98, 68] or the Sample Complexity of RL [79]. The conclusion,

however, is effectively the same: learning to make good decisions is easier if we choose the right

concepts for representing the state space.3

To conclude, we have seen how state-action concepts can profoundly affect learning difficulty.

Moreover, by the same reasoning we established in Chapter 4.2.2, state-action concepts deter-

mine planning difficulty. Collectively, state-action concepts offer great potential for mitigating the

difficulty of learning and planning, two fundamental practices of physically instantiated agents.

5.1.3 Accurate Concepts

We have so far glossed over one crucial point. As we make the set of hypotheses smaller, we might

actually throw away all reasonable solutions.

This brings us to the second crucial property our state-action concepts must adhere to: they

3One might object that PAC bounds are loose upper bounds, and in practice agents would need considerably less
data on average. Still, the tightest upper bounds tend to account for the worst case performance, so at the very least
we are in a similar position to the concerns raised about computational complexity in Chapter 2.
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need to support representation of good behavior. That is, they can’t be so inaccurate such that

an agent basing their decisions on them will be incapable of solving problems relevant to its own

flourishing.

Returning to Matt and the baking example, suppose we give Matt state-action concepts that

only make planning and learning easy. What might that look like? Unfortunately, the state-action

concepts that reduce all world states and all behaviors to the same thing makes planning and

learning trivial. There is nothing to learn and nothing to gain by planning. So, we have satisfied

the first property.

Of course this is undesirable. Thus, we need to also require that the resulting set of hypotheses

to be considered are actually useful. In the baking case, this says that not only can we translate

what we knew before to a new kitchen, but that this translation actually works. In the more

technical language, we might require that our new state concepts ensure that R ∈Hφ. That is, the

true function we are trying to learn is still representable in our new conceptual space. In Matt’s

case, the concept he uses have to carve out the world in a way that roughly latches on to some

causal laws of the world (at least those that are directly involved in the kinds of predictions Matt

will be making). This is not too different from Carballo’s proposal about good epistemic concepts:

they “carve the world at its joints”.

But, ensuring that the true functions we care about are representable in terms of our concepts

is not always trivial – we will often accidentally throw away the best hypotheses in our attempt

to limit the hypothesis size. This is precisely the difficulty of choosing the right state and action

concepts: the smaller our resulting hypothesis space, the easier it is to learn to make good decisions

(across each of the three approaches to learning), but if we make it too small, we might throw away

too many good candidates. But if the hypothesis space is too large, then finding a good hypothesis

98



is challenging. If the hypothesis space were a hay stack filled with some needles, the agent is

searching through it to find the needles. If there is too much hay, the agent has no hope. Our

trimming of the hypothesis space tries to control the needle-to-hay ratio so as to make the search

efficient, while not throwing away all the needles.4 We might try to impose constraints on the

hypothesis space to get rid of some hay (but in so doing we may get rid of a bunch of needles!).

This is in effect the fundamental problem of machine learning. The recent learning textbook

by Ben-David and Schwartz says of the matter: “Learning theory studies how rich we can make

H while still maintaining reasonable estimation error” [132]. In RL, matters are made even more

difficult as agents must explore and solve credit assignment, in addition to the usual problem of

generalization.

We have thus uncovered a dilemma facing agents: how can they form the appropriate state and

action concepts that ensures both of the following properties?

1. Concepts Make Learning and Planning Easy: learning is easier (because the hypothesis space

is compressed) and planning is easier (because our plan space is compressed).

2. Concepts Support Accurate Predictions: the hypothesis class contains enough relatively accu-

rate entities so that the agent can learn to make good decisions.

The thesis of this chapter is that good state-action concepts are responsible for trading-off

between maximizing both of the above properties. In essence, this trade-off raises a problem, which

I henceforth call the Practical Concept Choice (PCC) problem, that asks how resource bounded

agents should be making the above trade-off. This problem is intimately related to (and indeed,

heavily inspired by) Zilberstein’s proposal of metareasoning through bounded rationality [178]; on

4We could throw away all the needles and still make the search efficient by making it trivial to determine there
are no needles!
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his view, one strategy for approaching bounded rationality is to call on optimal metareasoning that

figures out how best to spend available resources. This in turn sets up tension between utility and

computation. The PCC problem is intended to build on this view by extending it to concepts: we

have seen how, under restricted assumptions, certain concepts can lead to more efficient learning,

but at the same time can throw away good solutions. A bounded rational agent makes a choice as

to how it must trade-off between these two factors.

I suggest that this question stands as an open and important piece of our broader story about

rationality.

In the next section I propose an initial story for how this trade-off might be made (and thus

draft an initial solution to the PCC problem). To do so I lean on information theory, and more

specifically, to rate-distortion theory, which presents a mathematical framework for studying trade-

offs of the relevant kind.

Many of the insights explored in this chapter are rooted in the earlier work of Ortega Jr [117], Or-

tega and Braun [116], who first proposed an information theoretic framework for studying bounded

rationality. Indeed, Ortega’s approach also calls on decision theory (and to some extent, RL) to

formalize the problems facing a bounded rational agent using tools of information theory.5 The core

of Ortega et al.’s method forms a new objective that forces agents to explicitly trade-off between

solution quality (expected value of the chosen decisions) and the information cost associated with

the decision. Intuitively, the information cost measures how complex the choice of decisions is,

relative to some initial prior choice of decisions. Ortega models this deviation according to the

Kullback-Leibler divergence between an agent’s chosen prior and the new behavior the agent is

likely to adopt [87]; in this sense, a similar trade-off is being optimized for. I take Ortega et al.’s

5Rubin et al. [127], Tishby and Polani [161] has also explored connections between information theory and RL.
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view and the account developed here to be entirely complementary to each other. The focus of this

investigation is on trade-offs of this kind in the space of concepts an agent chooses, as opposed to

the metareasoning involving minimizing something like the information cost of behavior. For more

in this direction, see the work of Harb et al. [59], which proposes a particular method for choosing

action concepts that brings together deliberation costs with concept choice.

5.2 Concepts

What we are after are concepts that satisfy two properties:

1. SmallConcepts: The first property says that the smaller our set of concepts is, the more

efficient learning and planning can be.

→ For learning: we saw this above with the hallway example. The upper bound on worst

case samples needed to (PAC, or otherwise) learn the relevant concepts goes down directly as

the concepts become simpler.

→ For planning: we saw this in the previous chapter. With more succinct concepts, the same

planning budget lets the agent get away with planning farther into the future, and some cases,

more widely, too (since we collapse separate plans into a single plan).

2. ActionableConcepts: The second property says that we still want to be able to find

concepts that track enough with reality so as to support good decision making. In other

words, if the agent is learning behavior directly, we would like the best learnable behavior to

still achieve high utility.

→ This can be measured mathematically in terms of properties like the value loss, which

measures how much value a given behavioral policy, πφ,O can achieve in the given MDP,
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M . Recall that V π(s) denotes the expected discounted value that policy π will achieve when

executed starting in state s. Using this definition, we can define the loss of a policy expressed

in terms of the new state-action concepts, φ,O, as follows:

LM(πφ,O) ∶= max
s∈S

∣V ∗
M(s) − V π∗φ,O

M (s)∣. (5.5)

If the above quantity comes out to zero, then the concepts represented by φ (state) and O

(action) can perfectly represent optimal behavior. As the loss increases, it means our state-

action concepts throw away more important information for making good decisions.

To get a true sense of how much decision-making quality one might lose by using new concepts,

we need to measure the value loss of the best behavioral policy representable in terms of the

new concepts:

min
πφ,O

LM(πφ,O) (5.6)

As discussed in the previous section, these two properties constantly pull on one another, giving

rise to the PCC problem. If we make the concept space small, then planning and learning are easy.

But, if we make it too small, we fail to preserve representation of good behavior. Really, rational

agents need both. How can agents properly coordinate between these two forces?

Intuitively, I will propose a strategy for seeking out concepts that are as compressed as possible

while still facilitating representation of good behavior. We can choose between concepts C1 and C2

by inspecting which better trades-off between SmallConcepts and ActionableConcepts.

Of course, different situations might call for different priorities: in a case where decision making

needs to be extremely precise, then ActionableConcepts is likely given more weight. If C1 and

C2 are equal according to their measurement in SmallConcepts, then C1 is said to be better
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just when C1 dominates C2 according to ActionableConcepts (and vice versa). To find a

mechanism for making this evaluation, we turn to information theory, and in particular, to recent

work in choosing good state concepts based on their capacity to adhere to SmallConcepts and

ActionableConcepts [3].

Before getting lost in the weeds, the main point of the next section is roughly as follows: there

is a principled method for finding state concepts that adhere to SmallConcepts and Action-

ableConcepts as best as possible. The major caveat is that we require as input a parameter, β,

that will determine an agent’s preference between these two properties. If β is 0, then the agent

only cares about SmallConcepts, while as β grows closer to ∞ the agent only cares about Ac-

tionableConcepts. For a given choice of the parameter, the method we describe will make the

appropriate trade-off. No general procedure for determining how to best make this trade-off is yet

known, but represents an open area for future work.

The theory I articulate is about state concepts. Harb et al. [59] presents a similar idea for

action concepts, but is based on deliberation cost rather than compression. Understanding the

nature of good action concepts is an active area of research in RL [66, 105, 106, 150, 141, 142, 143,

84, 99, 83, 100, 101, 42, 113, 125]. I take it as a given that some nearby scheme for finding action

concepts (together with state concepts) will go through in the relevant sense.6

5.3 Information Theory to the Rescue

Information Theory studies communication in the presence of noise [133]. In Shannon’s words:

“The fundamental problem of communication is that of reproducing at one point either exactly

or approximately a message selected at another point.” Information Theory typically investigates

6Some approaches also exist for jointly finding state-action concepts, instead of finding them separately [123, 74,
31, 10, 23, 159, 103].
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coder-decoder pairs and their capacity to faithfully communicate messages with zero or low error,

even in the presence of noise. For more on information theory, see [133, 35].

Why call on information theory? Well, what we are after is a way to explicitly model the

trade-off made by a set of concepts between ActionableConcepts and SmallConcepts. In-

formation theory tells us how small things (broadly construed) can get before throwing away too

much information. As discussed previously, Ortega and Braun [116] presents a bottom up account

of information theory in bounded rationality.

In particular, we will turn to rate-distortion theory, which studies the trade-off between the

compression and faithful reproduction of the original signal. The typical RD setting is pictured in

Figure 5.2a: an information source generates some object, say an image of a landscape, or a piece

of music. We then encode this object by writing down some short description of the object called

the “code”. This code is supposed to be as small as possible—this is where the compression takes

place. Then, using this code, we need to reconstruct the original object (image of the landscape,

the song, and so on). In this way, what we are looking for is the coding-decoding scheme that can

lead to small codes while still enabling those codes to produce accurate images. “Rate” is defined

as the number of bits in the code, and “distortion” is defined by how much the input object and

the reconstructed object differ. If we only ever had to reconstruct one object (a single landscape

image) then our code could be arbitrarily small: the solution to always reproduce the original input

image will work just fine. But, if we have many potential objects that we need to be responsible

for coding and reconstructing, then our code needs to be quite a bit longer to capture the relevant

distinctions between objects.

In this way, if there are structural similarities across objects, they can be captured by the same

elements of the code. For example, if we have to code many different landscape images, one bit
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Figure 5.2: The usual Rate-Distortion setting (left) and the lower bound on the Rate-Distortion
trade-off (right)

of our code might be the color of the sky: if it is blue, then the “sky-color” bit is a 0, if it is a

dark, night-time sky, then this bit is a 1. Thus, codes are really responsible for breaking apart the

structure inherent in the objects of interest.

It is here the concepts start to emerge. Which concepts should be used to break apart the

structure inherent in the entities we must code? Shortly, we will move away from the process of

reconstruction (which is more in line with epistemic rationality), and onto the process of decision

making, which connects directly with our overall goal of practical rationality.

5.3.1 Finding the Right Codes: Blahut-Arimoto

The work ahead of us will be to leverage the insights from rate-distortion theory to give an account

of good concepts. To do so, what we really need is a sense of how to find the coders/decoders that

make the right trade-off.

Ideally, we would come up with a method that can determine the appropriate preference between

these two quantities based on the problem. Perhaps in the given situation the agent needs to make

decisions extremely quickly, and would be better served with more compact concepts.

In 1972, Blahut and Arimoto independently discovered an algorithm for finding these optimal

coder-decoder pairs [16, 6]. Their algorithm (now called the Blahut-Arimoto algorithm) finds the
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coder-decoder pair that perfectly solves the trade-off between rate and distortion. To be more pre-

cise, the algorithm takes as input a number, β ∈ [0,∞), that indicates a relative preference between

compression (rate) and accuracy (distortion). If β = 0, then the algorithm only prioritizes com-

pression, and so distortion will be arbitrarily high. As β grows, the algorithm finds coder/decoder

pairs that favor distortion.

To summarize, for a particular choice of how to make the trade-off, for a particular set of objects

(landscapes, songs, and so on), Blahut-Arimoto will find a coder-decoder that optimally makes the

relevant trade-off. That is, there is no coder/decoder pair that does a better job of making the

trade-off, for that particular β.7

However, critical to RD theory is the reconstruction of the input signal. Take another look at

Figure 5.2a. At the end of the pipeline, we do our best to rebuild the original signal x. If all we

wanted our agents to do in the world was reconstruct some input signal, then BA would give us

our solution.

Let us turn to thinking about practical rationality once more: to what extent does an agent’s

capacity for making good decisions depend on reconstruction of its stream of perceptual data? It is

likely that the appropriate answer is: not at all. Of course, what we do with our perceptual data is

not on its own uncontroversial. But, for our purposes, it is unclear how to relate reconstruction of

percepts with good decision making.8 However, in the realistic setting in which agents are cogni-

tively limited by resource constraints, it is hard to justify allocating lots of cognitive resources for

7It is worth saying a few words about the speed of the algorithm: BA is known to converge to the global optimum
with convergence rate:

O (∣X ∣∣X̃ ∣
√

log(∣X̃ ∣)/ε) , (5.7)

for ε error tolerance [6]. The computational complexity of finding the exact solution for a discrete, memoryless channel
is unknown. For a continuous memoryless channel, the problem is an infinite-dimensional convex optimization which
is known to be NP-Hard [153].

8Perhaps reconstruction is sufficient for making good decisions, when paired with other hefty machinery that does
the appropriate thing with those perceptual data.
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the purpose of reconstructing precise perceptual input. Those same resources could be better spent

on remembering critical things from the recent past, modeling laws relevant to making accurate

predictions of the environment, or on supporting better state/action concepts. So, I take it that we

are not really after reconstruction, but instead, on making good decisions based on a compressed

concept space.

Our next and final move is to convert the approach taken by Blahut-Arimoto to one that

incorporates decision making as opposed to reconstruction.

5.3.2 Reconstruction to Action: The Information Bottleneck Method

We will turn to a recent extension of RD theory that explicitly incorporates decision making:

the Information Bottleneck method (IB). As discussed, traditional RD theory defines “relevant”

information by choice of a distortion function—codes are said to capture relevant information if

they achieve low distortion. The IB defines relevant information according to how well the given

code can support prediction of relevant properties about the given object.

So, for example, suppose again we are coding images of landscapes. Instead of decoding our code

into an image that is supposed to approximate the original landscape, we now ask: what questions

can I answer using only the code? Can I determine that this particular landscape is of Italy? That

there are mountains? That it depicts a sunrise? If we can ask questions of this form using the

code, then our code is said to capture the relevant information about the original image. This way,

we can avoid wasting precious cognitive resources on reconstruction of unnecessary details (“how

many leaves are depicted?”).

Tishby et al. [162] offer a convergent algorithm for solving this extension. Specifically, they

prove that there is an extension of the Blahut-Arimoto algorithm to the case of prediction. The
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only difference is that the new algorithm is not guaranteed to find the perfect solution, but instead

a reasonable solution. To the best of our knowledge, there is no known efficient algorithm for

computing the global optimum. Mumey and Gedeon [111] show that a closely related problem to

finding the global optimum in the above is in fact NP-Hard, suggesting that local convergence or

approximation is likely our best option.

Let us recap the newly introduced technical tools: we set out to find a means of comparing

concept sets based on their rating of ActionableConcepts and SmallConcepts. I have now

proposed the information bottleneck method as formal means of studying the trade-off between

the extent to which a set of concepts satisfy these two properties. A concept set is encouraged

to be smaller by lowering its size, but still retain some accuracy by retaining its ability to make

predictions about some relevance variable y.

We now extend these insights to RL by supposing that the relevance variable y is consists solely

of good decisions.

5.3.3 Extension to RL

For the IB to be useful for our purposes, we need it to extend beyond simple prediction to the more

general case of sequential decision making.

This gives rise to a particular model for finding state concepts, pictured in Figure 5.3. Recent

work presents an efficient algorithm for producing state concepts in this setting [3].

To see the idea, let us return to Matt’s baking endeavors in the kitchen. The premise of the

algorithmic structure we have so far sketched is that Matt can watch other agents perform various

baking related tasks (presumably those agents good at baking) and identify when other agents take

actions. Those world states that are important for determining when other bakers do different
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things are crucial for ensuring that Matt, too, can bake like these other agents. The other source of

information Matt needs is his own reward signal: did the bread taste good after I made it? What

contributed most to its tastiness? Any concepts needed to answer these questions will be crucial

as well.

Philosophically, this means that agents should update their concepts so as to either 1) make

them smaller (in accordance with SmallConcepts) or 2) make them support better decisions (in

accordance with ActionableConcepts).

The key insight of the algorithmic work referenced above is that we need to ensure that an ad-

justment of either kind is worth it. We would hate to make our concepts simpler only to completely

destroy our ability to make good decisions!

One relatively desirable feature of this theory is that the evidence agents receive directly suggests

updates of either of the two kinds. Specifically, in learning, agents receive evidence of two distinct

forms:

1. Lessons or demonstrations provided by teachers: either an agent is privy to a demonstration

or a teacher provides ostensive instruction.

2. Reward: evolved agents receive internally generated reward to elicit repetition of behaviors

that tend toward survival and reproduction [4, 131].

In the framework described, agents get to watch a teacher/expert (or any more experienced

agent) make decisions. They then search for state concepts that can still explain what the teacher

does. Crudely, the algorithm performs updates by carrying out one of two operations: collapse the

state concepts to be smaller by grouping together similar states (those where the teacher behaves

similarly), or break apart states in order to ensure that relevant distinctions in good behavior can
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Figure 5.3: Trading off compression with value via well chosen state concepts. We suppose the
MDP generates states according to some probability distribution, p(s). Then, the agent forms its
state representation, sφ, and chooses an action from its policy πφ. We then inspect the distance
between what an expert’s behavioral policy would do, πE(a ∣ s), and what the agent would do. The
goal here is for the agent to form state concepts that can still represent roughly what an expert
does, in the states generated by p(s).

be made. Threshold for state similarity and relevance are determined according to the parameter

β, without which the objective is under specified.

For an individual, the idea is that we observe our companions within our community and our

own reward signals to determine our concepts. There is now strong evidence that people (and

indeed, many other mammals) have evolved strong neural mechanisms for predicting reward and

punishment [131]. Using this reward prediction mechanism, agents can hone concepts that do a

good job of supporting long-term expected reward prediction. In the context of the introduced

algorithm we’d imagine an agent learning which concepts lead to distinctions in their own reward,

or in prediction of other agent’s behavior – by repeatedly performing updates of this kind to one’s

own concept set, one would eventually find a parsimonious, but still accurate set of concepts.

To summarize: using these two sources of evidence, boundedly rational agents can hone their

concepts by searching for the simplest set of state-action concepts that still fit the data. The work

discussed in this chapter presents a partial path toward realizing such a theory.

5.4 Objections

I now discuss objections facing the theory.
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5.4.1 O1: Invalid Assumptions

First, one might take issue with the setup: the theory is overly specialized given the assumptions.

More over, we set out to move away from the unrealistic assumptions of ideal rationality, and ended

up in an even worse off position (regarding realism). Perhaps the worst of these are assumptions

that state and action concepts can be updated (attended to in O2), the Markov assumption, and

that the remaining aspects of the agents in question are held constant (planning, exploration, and

so on).

Response

To get any theory off the ground we need to make some simplifying assumptions – I take the

scope is still of sufficient breadth so as to be useful. Naturally, future work involves relaxing these

assumptions. To summarize some of them, we required a Markovian world model (underlying the

MDP), assume discrete state and action spaces, a fixed discounting rate γ (that determines an

agent’s preference for immediate vs future rewards), and only deal in state and action concepts. Of

course, each of these adds convenient simplifications to our model that might be relaxed in future

work. To say a few initial words on these relaxations: the Markov property can be surprisingly

general if we allow for the world history to be folded into the state representation (which also then

allows all results on MDPs to extend to these more general history-based processes). The discount

factor is notoriously convenient-but-wrong in the RL literature. However, alternate formulations

of the objectives RL exist, like the average reward criterion. And lastly, state and action concepts

still span a rich and important subset of all concepts, so I take them to be of sufficient interest.
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5.4.2 O2: Impracticality

To frame our next objection, let us return to the following question: what is the purpose of studying

(and creating explanatory theories of) rationality? We had stated that one answer might be that it

is profoundly useful to have a clear picture of good reasoning to act as a guide to better understand

how we should behave, given a variety of circumstances. If we can form a simple explanatory view

of rational behavior, it is likely that we can use this view to prescribe how to behave.

Now that concepts are in the mix, the same expectation should be placed on a theory of rational

concept formation. Such a theory ought to be practical enough to act as a guide for clarifying our

own concept acquisition and exploitation practices. However, one might here object: since we are

not directly in control of the set of concepts we use to reason with, such a theory fundamentally

cannot act as a guide since we are incapable of incorporating its advice.

Moreover, our concepts by default are good enough (most people can navigate a city, write a

letter to a friend, or play a game of monopoly – all diverse and seemingly challenging feats). Why

care about making slight improvements to them? What can we really gain by making changes to

concepts?

Response

It is largely an empirical matter as to whether people can in principle update their concept sets in

the relevant sense. This is largely a new proposal, so perhaps with the right tools and techniques,

improvements can be made to one’s concepts. As suggested previously, by better understanding

the processes underlying efficient learning and decision making, we may uncover new avenues for

individuals to learn efficiently in the real world. Still, even if individuals can’t explicitly update

their own concepts (quickly, at least), we might still find it useful for determining whether or not
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concepts are useful in a particular domain. Clarifying the essence of rationality is still of interest

and use; in part, we went from a position of highly unrealistic assumptions (as in ideal rationality)

to an account with potentially unrealistic assumptions. So, we have moved the view of rationality

to one that is closer to the right picture.

To the second point, it is an open empirical question as to how much more useful our concepts

can become. Simulations and the PAC-like insights presented in the previous section tell us that

good concepts can dramatically improve an agent’s ability to efficiently learn to make good decisions.

Perhaps our concepts for most day-to-day tasks are sufficient, but by better understanding the

process of good concept acquisition, individuals might be able to better specialize and learn new

skills or domains by concentrating explicitly on learning good concepts. Even if there are some

cases where we gain in utility from improving concepts, that is sufficient to motivate the theory.

5.4.3 O3: Concept Size

No measure of concept size from RL has a useful analogue in humans. So, why bother with

addressing the notion of concept size?

Response

To see whether this argument has weight, let us summarize the methods for capturing concept size

in RL. In the simple case of measuring concept size in terms of state concepts, we find the following

reasonable candidates:

• The number of propositions needed to encode relevant state configurations.

• The number of bins involved in the abstract state space: ∣Sφ∣.

• The number of bits required to write down the mapping φ.
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Of course, as with any model, much of the formal framework depends on critical assumptions

that don’t hold in the real world. However, I stipulate that there is enough traction between the

above quantities (and likewise for action concepts) that we can at least built out our initial theory

using them, and clarify further as needed. None of the above measures are perfect, but they largely

track with what we mean by concept size. It is partially an open question as to how best measure

the size of any computational object, drawing on many of the same issues that emerged when we

discussed shortcomings of worst-case complexity analysis in Chapter 2. Additionally, we can in

part defer to the psychological literature for a clear and practical picture of concept size, and assess

the degree to which these track based on our best estimates from current methods. Thus, I don’t

think this objection carries much weight. It is still extremely useful to understand how the size of

concrete objects interplays with planning and learning difficulty, even if the units of measurement

are a slight deviation from what we will actually use to measure aspects of cognitive practices of

biological organisms.

5.4.4 O4: Fixing β is Too Restrictive

As stated, the core algorithm requires that we know up front the right trade-off between Small-

Concepts and ActionableConcepts. Even worse, the units for these two quantities isn’t even

the same, so β is measureless in some sense (and must be drawn from the open interval [0,∞)).

The vast majority of the work is still to be done: what we really need is a theory for dynamically

determining how much to prioritize each property based on the current situation.
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Response

This is indeed a practical limitation of our current algorithm. However, the structure is suggestive

of a broader idea: agents should be making this trade-off in the right way. It is an open technical

question as to how to do this precisely when β is not known, but I don’t take this to be a direct

knock on the broader theory introduced. It just means there is more work to be done. Besides,

existing work in metareasoning, such as the early work of Zilberstein [176, 177] and Horvitz [62, 64]

tackle precisely the sorts of problems involving choosing β. It is useful to know how we might

make this trade-off for a fixed β, and is solid first step in generating the more robust theory that

can discover the appropriate β, possibly by relying on existing techniques from the metareasoning

literature. So, again, I take the initial theory offered here to be useful, and to be suggestive of more

general analysis for thinking about resource constrained rational decision making.
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Chapter 6

Conclusion

This work first set out to give formal character to rational agents that must act under resource con-

straints, building on Simon’s bounded rationality and the subsequent developments from Gigeren-

zer’s ecological rationality, computational rationality [49], metareasoning [177, 62], and other rele-

vant frameworks [117, 59]. I first argued that RL can serve as the right kind machinery for studying

rationality of these kinds (that is, under realistic assumptions). In RL, agents interact with an envi-

ronment they initially know nothing about. Through this interaction these agents collect evidence

that offers insight into the nature of the world they inhabit and the goals they seek. The problem

facing these agents is to learn about their world in this manner while using collected evidence

to inform their decision making. As discussed in Chapter 3, to get off the ground, RL research

tends to make several key simplifying assumptions. For our purposes, we find these assumptions

are largely agreeable; the resulting formalism is still useful enough to offer new insights, even if

the assumptions are ultimately unrealistic. Most significantly, RL gives a unique vantage to unify

the process of gathering evidence (the “exploration” problem), perception (which aspects of the

world state does the agent actually base its decisions on?), planning (does the agent reason about
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future consequences to inform its decision?), and utility-maximizing action (how much utility did

the agent’s achieve in its course of action?). All the while, agents studied under this unifying per-

spective can be given explicit resource budgets in the form of computational resources like time and

memory. I conclude from these facts that RL is a useful method for investigating rational decision

making under resource constraints. For more on this argument, see Chapter 3.

We next turn to the primary contribution of this work: understanding the role that good

concepts play in bounded rationality. This inquiry constitutes Chapters 4 and 5. To summarize

these arguments, let us consider two agents that are identical apart from their concepts. After

making some simplifying assumptions, we showed that the agent with the correctly chosen set

of concepts will be more effective at making decisions than the other, as assessed by the total

amount of expected utility the agent can achieve. In so far as expected utility maximization is an

appropriate goal for practical rationality, concepts can change an agent’s potential for making good

decisions, and in turn, are critical to any view of practical rationality.

Chapter 5 dives deeper into what constitutes a good concept. Under the broader goal of practical

rationality, we want concepts that support high utility decision making. The problem we uncovered

suggests that concepts can contribute to making better decisions if they are either compressed

(so that planning and other internal computation is easy), or are accurate (so that predictions

based on them track with the world). We formalize these two properties as SmallConcepts and

PracticalConcepts respectively. Unfortunately, these two properties are in fundamental tension

with one another. As an agent’s concept set becomes more parsimonious, it loses expressiveness.

So: bounded rational agents face a fundamental dilemma about how to best trade-off between these

two conflicting properties. I claim that this dilemma is central to any study of rationality under

realistic assumptions. I conclude by giving an initial response to the dilemma based on ideas from
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information theory and rate-distortion theory; agents receive evidence that lets them update their

concepts so as to make them smaller or more accurate (possibly at the expense of one another).

A boundedly rational agent, then, is one that makes this trade-off effectively. I sketched an initial

pass as to how an agent might make this trade-off based on recent work in RL. I close by raising

and responding to several objections to the theory.

Many open questions remain, both theoretical and empirical. Perhaps the most pressing tech-

nical question is whether a more general variant of the algorithm presented in Chapter 5 exists that

does not explicitly require a predefined trade-off between parsimony and accuracy. I suspect ideas

from metareasoning might prove useful here. Second, there is still a profound open question as to

how to measure learning difficulty in general. PAC learning and the broader statistical learning

framework laid the groundwork for measuring how hard learning certain functions is, under different

assumptions. However, there is as of yet no consensus for measuring the difficulty of an arbitrary

problem in the RL sense of the word. As discussed in the background, we have at our disposal many

tools for measuring computational difficult of decision problems (and their kin). However, being

effective at RL is not just about raw computation. It involves exploring, generalizing, transferring

knowledge, handling uncertainty, and planning with an imperfect model – all of which together

pose difference kinds of challenges. Recent work has proposed measures of hardness [102], but there

is still room for a more general measure. The theory I introduced suggests that parsimony alone

may guarantee that learning is easy. However, this is not always the case. Clearly there are large

but easy problems and small but hard problems. To establish a theory for defining concepts that

trade-off between the relevant properties, we need a true measure of learning difficulty.

In summary, RL has a lot to offer the study of rationality because of its close attachment to

(nearly) realistic assumptions of agents that learn to solve problems. Our immediate and most
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significant finding was that the concepts an agent uses to reason about its objectives and plans

actually plays directly into its ability to be rational. I take the initial foundations established here

to suggest that effective concept formation might be thought of as a rationally required project [41].

One consequence might be that people should think more about explicit strategies for building good

concepts, or at the very least, we can identify aspects of our concepts that are ineffective (such as

those that are uncompressed). Or, alternatively, to better understand how one should learn about

a new game, subject, hobby, or otherwise, perhaps it is important to appropriately emphasize

learning the right concepts, first.
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