
The Expected-Length Model of Options: Supplemental Material

We here introduce proofs of our theoretical results and further details about our experimental domains.

1 Proofs
We first present proofs of each introduced result.

Lemma 1. Under Assumption 2, the ELM transition model is sufficiently close to the expected transition model of the
multi-time model.

More formally, for any option o ∈ O, for some real τ > 1, for δ =
σ2
k,o

τ2 , and for any state pair (s,′ s) ∈ S × S ,
with probability 1− δ:

|Tγ(s′ | s, o)− Tµk(s′ | s, o)| ≤ γµk,o−τ (2τ + 1)e−βmin . (1)

Proof. Let Tγ(s′ | s, o) denote the multi-time model, and let Tµk(s
′ | s, o) denote the expected length model.

For a fixed but arbitrary state-option-state triple (s, o, s′):

|Tγ(s′ | s, o)− Tµk(s′ | s, o)| = |
∞∑
t=1

γt Pr(st = s′, β(s′) | s, o)− γµk
∞∑
t=1

Pr(st = s′, β(s′) | s, o)| (2)

= |
∞∑
t=1

γt Pr(st = s′, β(s′) | s, o)− γµk Pr(st = s′, β(s′) | s, o)| (3)

= |
∞∑
t=1

(γt − γµk) Pr(st = s′, β(s′) | s, o)| (4)

= |
∞∑
t=1

(γt − γµk) Pr(st = s′ | s, o) · β(s′)| (5)

Note that Pr(st = s′, β(s′) | s, o) is bounded above:

Pr(st,= s′, β(s′) | s, o) ≤ (1− βmin)t, (6)

since, in order to be in state st at time t we have to not terminate in each of s1, . . . st. Further, we know that:

(1− x)t ≤ e−xt (7)

for any x ∈ [0, 1]. Therefore:
Pr(st,= s′, β(s′) | s, o) ≤ e−βmint (8)

So, rewriting:

|Tγ(s′ | s, o)− Tµk(s′ | s, o)| = |
∞∑
t=1

(γt − γµk) Pr(st = s′, β(s′) | s, o)| (9)

≤ |
∞∑
t=1

(γt − γµk)e−βmint|. (10)
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Thus:

|Tγ(s′ | s, o)− Tµk(s′ | s, o)| ≤ |
∞∑
t=1

(γt − γµk)e−βmint| (11)

Let K denote the random variable indicating the number of time steps taken by the option. Now, note that by Cheby-
shev’s inequality, we know that for any τ > 1:

Pr{|K − µk| ≥ τ} ≤
σ2

τ2
. (12)

Thus, letting δ = σ2

τ2 , we find that:

Pr{|K − µk| ≤ τ} ≥ 1− σ2

τ2
= 1− δ. (13)

Thus, with probability 1− δ:

|Tγ(s′ | s, o)− Tµk(s′ | s, o)| ≤ |
µk+τ∑
t=µk−τ

(γt − γµk)e−βmint| (14)

=

µk+τ∑
t=µk−τ

|(γt − γµk)|e−βmint (15)

≤
µk+τ∑
t=µk−τ

|γµk−τ |e−βmint (16)

= γµk−τ
µk+τ∑
t=µk−τ

e−βmint (17)

≤ γµk−τ (2τ + 1)e−βmin (18)

Therefore, for δ = σ2

τ2 :

Pr{|Tγ(s′ | s, o)− Tµk(s′ | s, o)| ≤ γµk−τ (2τ + 1)e−βmin} ≥ 1− δ.

Lemma 2. Under Assumptions 1 and 2, ELM’s reward model is similar to MTM’s reward model.

More formally, for a given option o, for δ =
σ2
k,o

τ2 , for some τ > 1, for any state s:

|Rγ(s, o)−Rµk(s, o)| = |Tγ(sg | s, o)− Tµk(sg | s, o)|. (19)

And, thus, with probability 1− δ:

|Rγ(s, o)−Rµk(s, o)| ≤ γµk,o−τ (2τ + 1)eβmin . (20)

Proof. Under an SSP, all rewards are either 0 or 1, when the agent transitions into the goal state, sg .
Thus, if a given option cannot reach the goal state, the two reward models are identical, since all accumulated

rewards by the option will be 0:
|Rγ(s, o)−Rµk(s, o)| = 0. (21)

Conversely, if the option can reach the goal state, then the expected reward of the option is just the probability, under
the relevant transition model (Tγ or Tµk ) of reaching the goal. Therefore, more generally:

Rγ(s, o) := Tγ(s, o, sg), (22)
Rµk(s, o) := Tµk(s, o, sg). (23)

2



Consequently, by definition:

|Rγ(s, o)−Rµk(s, o)| = |Tγ(sg | s, o)− Tµk(sg | s, o)| (24)

Thus, we conclude by applying Lemma 1, for δ = σ2

τ2 , for any s and o:

Pr
{
|Rγ(s, o)−Rµk(s, o)| ≤ γµk−τ (2τ + 1)eβmin

}
≥ 1− δ. (25)

Theorem 1. In SSPs, the value of any policy over options under ELM is bounded relative to the value of the policy
under the multi-time model, with high probability.

More formally, under Assumptions 1 and 2, for any policy over options πo, some real valued τ > 1, ε =

γµk,o−τ (2τ + 1)e−βmin , δ = σ2

τ2 , for any state s ∈ S, with probability 1− δ:

|V πoγ (s)− V πoµk (s)| ≤
ε(1− γµk) + γµk ε2RMAX

(1− γµk)(1− γµk + ε
2γ

µk)
.

Proof. Let
ε := γµk−τ (2τ + 1)e−βmin , (26)

and again let δ = σ2

τ2 . By Lemma 1 and Lemma 2, we know that the reward and transition models are bounded, each
with probability 1− δ:

|Rγ(s, o)−Rµk(s, o)| ≤ ε, (27)
|Tγ(s, o, s′)− Tµk(s, o, s′)| ≤ ε. (28)

Then, let
V πγγ,ε (s) = Rγ(s, o) + γµk

∑
s′∈S

(Pr(s′ | s, o) + ε)V µkγ,ε (s
′). (29)

Note that, by the transition model bound above:

||V πγγ (s)− V πγµk (s)||∞ ≤ ||V
πγ
γ,ε (s)− V πγµk (s)||∞ (30)

Then, by Lemma 4 from ?, we upper bound the right hand side of Equation 30 with probability 1 − δ, for any
option o, any policy π, for any state s:

|Qπγ,ε(s, o)−Qπµk(s, o)| ≤
(1− γµk)ε+ γµk ε2RMAX

(1− γµk)(1− γµk + ε
2γ

µk)
. (31)

By combining Equation 30 and Equation 31, we conclude the proof.

2 Experimental Details
The Bridge Room domain is a variant gridworld where a large central room contains a bridge of traversable cells that
are flanked by “pits” (failure states). The agent starts on one side of the bridge, and the goal state is opposite, with
both just outside of the interior room. Two corridors on either side of the central room offer safe but longer pathways.
Differing from the Four Rooms domain, the agent is only given options for moving to the doorways between rooms.
The bridge is short but crossing it is dangerous due to stochasticity. The ideal policy, then, is to use either corridor
option around the bridge room.

The Taxi domain Dietterich (2000) is a classic hierarchical learning problem where the agent, a taxi, must collect
passengers and ferry them to different destinations. Here, options are based on the standard MAXQ task hierarchy
from Dietterich (2000): four NAVIGATE options (one each for moving between depots, with all primitive movement
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actions); for each passenger, there’s a GET option that can “pickup” (a primitive action) and a PUT option to “putdown”
the passenger, with both GET and PUT able to use all NAVIGATE options; and, a ROOT option that can GET and PUT
any passengers.

The discrete Playroom domain Singh et al. (2005); Konidaris et al. (2018) defines a complex, interlaced hierarchi-
cal planning problem. The agent has three effectors (an eye, a hand, and a marker) that must be moved separately. The
environment contains music and lights (both off) and several objects that can be interacted with if both the hand and
eye are over them. There is a switch that turns the lights on or off, a green button that turns music on, a red button that
turns music off, a ball that can be thrown towards the marker, a bell that rings when hit by the ball, and a monkey that
cries only when the lights are off, the music is on, and the bell rings; the goal is to make the monkey cry. Playroom
offers a tough challenge in that all three effectors must be coordinated and some work must be undone: buttons can
only be pressed when the light is on, so any solution requires first turning the lights on, turning the music on, turning
the lights back off, and throwing the ball at the bell. Following Konidaris et al. (2018), our agent plans over the interact
primitive action and options for moving each effector to each object.
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Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions in reinforcement
learning. In ICML, page 95. ACM, 2004.

Satinder P Singh, Andrew G Barto, and Nuttapong Chentanez. Intrinsically motivated reinforcement learning. In
NeurIPS, pages 1281–1288, 2005.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–44, 1988.

Erik Talvitie. Self-correcting models for model-based reinforcement learning. In AAAI, pages 2597–2603, 2017.

Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, James MacGlashan, and Marie desJardins. Portable
option discovery for automated learning transfer in object-oriented Markov decision processes. In IJCAI, 2015.

Paul Tseng. Solving H-horizon, stationary Markov decision problems in time proportional to log(H). Operations
Research Letters, 9(5):287–297, 1990.

Martha White. Unifying task specification in reinforcement learning. In ICML, pages 3742–3750, 2017.

5


