
Finding Options that Minimize Planning Time (Appendix)

Yuu Jinnai 1 David Abel 1 D Ellis Hershkowitz 2 Michael L. Littman 1 George Konidaris 1

A. Appendix: Inapproximability of MOMI
In this section we prove Theorem 4:

Theorem 4.

1. MOMI is ⌦(log n) hard to approximate even for deter-

ministic MDPs unless P = NP .

2. MOMIgen is 2log
1�✏ n

-hard to approximate for any

✏ > 0 even for deterministic MDPs unless NP ✓

DTIME(npoly logn).

3. MOMI is 2log
1�✏ n

-hard to approximate for any ✏ > 0
unless NP ✓ DTIME(npoly logn).

For Theorems 4.2 and 4.3 we reduce our problem to the Min-
Rep, problem, originally defined by (Kortsarz, 2001). Min-
Rep is a variant of the better studied label cover problem
(Dinur & Safra, 2004) and has been integral to recent hard-
ness of approximation results in network design problems
(Dinitz et al., 2012; Bhattacharyya et al., 2012). Roughly,
Min-Rep asks how to assign as few labels as possible to
nodes in a bipartite graph such that every edge is “satisfied.”

Definition 1 (Min-Rep):
Given a bipartite graph G = (A [B,E) and al-

phabets ⌃A and ⌃B for the left and right sides of

G respectively. Each e 2 E has associated with

it a set of pairs ⇡e ✓ ⌃A ⇥ ⌃B which satisfy it.

Return a pair of assignments �A : A ! P(⌃A)
and �B : B ! P(⌃B) such that for every e =
(Ai, Bj) 2 E there exists an (a, b) 2 ⇡e such that

a 2 �A(Ai) and b 2 �B(Bj). The objective is to

minimize
P

Ai2A |�A(Ai)|+
P

Bj2B |�B(Bj)|.

We illustrate a feasible solution to an instance of Min-Rep
in Figure 1.

The crucial property of Min-Rep we use is that no
polynomial-time algorithm can approximate Min-Rep well.
Let ñ = |A|+ |B|.

Lemma 1 (Kortsarz 2001). Unless NP ✓

DTIME(npoly logn), Min-Rep admits no 2log
1�" ñ

polynomial-time approximation algorithm for any

" > 0.

As a technical note, we emphasize that all relevant quantities
in Min-Rep are polynomially-bounded. In Min-Rep we have
|⌃A|, |⌃B | ñ

c0 for constant c0. It immediately follows
that

P
e |⇡e| n

c for constant c.

A.1. Hardness of Approximation of MOMI with
Deterministic MDP

Theorem 4.1 Proof. The optimization version of the set-
cover problem cannot be approximated within a factor of
c · lnn by a polynomial-time algorithm unless P = NP (Raz
& Safra, 1997). The set-cover optimization problem can be
reduced to MOMI with a similar construction for a reduction
from SetCover-DEC to OI-DEC. Here, the targeted mini-
mization values of the two problems are equal: P (C) = |O|,
and the number of states in OI-DEC is equal to the number
of elements in the set cover on transformation. Assume there
is a polynomial-time algorithm within a factor of c · lnn
approximation for MOMI where n is the number of states
in the MDP. Let SetCover(U ,X) be an instance of the set-
cover problem. We can convert the instance into an instance
of MOMI(M, 0, 2). Using the approximation algorithm,
we get a solution O where |O| c lnn|O⇤

|, where O
⇤ is

the optimal solution. We construct a solution for the set
cover C from the solution to the MOMI O (see the construc-
tion in the proof of Theorem 1). Because |C| = |O| and
|C

⇤
| = |O

⇤
|, where C

⇤ is the optimal solution for the set
cover, we get |C| = |O| c lnn|O⇤

| = c lnn|C⇤
|. Thus,

we acquire a c · lnn approximation solution for the set-cover
problem within polynomial time, something only possible if
P=NP. Thus, there is no polynomial-time algorithm with a
factor of c·lnn approximation for MOMI, unless P=NP.

A.2. Hardness of Approximation of MOMIgen

We now show our hardness of approximation of 2log
1�✏ n

for MOMIgen, Theorem 4.2.1

We start by describing our reduction from an instance of
Min-Rep to an instance of MOMIgen. The intuition behind
our reduction is that we can encode choosing a label for a

1We assume that O0 is a “good” set of options in the sense that
there exists some set O⇤

✓ O
0 such that L✏,V0(O

⇤) `. We
also assume, without loss of generality, that " < 1 throughout this
section; other values of " can be handled by re-scaling rewards in
our reduction.

Finding Options that Minimize Planning Time (Appendix)

vertex in Min-Rep as choosing an option in our MOMIgen
instance. In particular, we will have a state for each edge
in our Min-Rep instance and reward will propagate quickly
to that state when value iteration is run only if the options
corresponding to a satisfying assignment for that edge are
chosen.

More formally, our reduction is as follows. Consider an
instance of Min-Rep, MR, given by G = (A [B,E), ⌃A,
⌃B and {⇡e}. Our instance of MOMIgen is as follows
where � = 1 and l = 3.2

• State space We have a single goal state Sg along with
states S

0
g and S

00
g . For each edge e we create a state

Se. Let SatA(e) consist of all a 2 ⌃A such that a is in
some assignment in ⇡e. Define SatB(e) symmetrically.
For each edge e 2 E we create a set of 2 · |SatA(e)|
states, namely Sea and S

0
ea for every a 2 SatA(e). We

do the same for b 2 SatB(e).

• Actions and Transitions We have a single action from
S
0
g to Sg, a single action from S

00
g to S

0
g. For each

edge e we have the following deterministic actions:
Every S

0
ea has a single outgoing action to Sea for a 2

SatA(e); Every Seb has a single outgoing action to Seb0

for b 2 SatB(e); Every Sea has an outgoing action to
Seb if (a, b) 2 ⇡e and every S

0

eb has a single outgoing
action to Sg; Lastly, we have a single action from S

0
ea

to S
00
g for every a 2 SatA(e).

• Reward The reward of arriving in Sg is 1. The reward
of arriving in every other state is 0.

• Option Set Our option set O0 is as follows. For each
vertex Ai 2 A and each a 2 ⌃A we have an option
O(Ai, a): The initiation set of this option is every Se

where e is incident to Ai; The termination set of this
2It is easy to generalize these results to l � 4 by replacing

certain edges with paths.

A1

A2

B1

B2

(a1, b2)

(a
2 , b

3), (a
3 , b

1)

(a3, b1)

a1, a2

a3

b2

b1, b3

Figure 1: An instance of Min-Rep with ⌃A = {a1, a2, a3}

and ⌃B = {b1, b2, b3}. Edge e is labeled with pairs in
⇡e. Feasible solution (�A, �b) illustrated where �A(Ai) and
�B(Bj) below Ai and Bj in blue. Constraints colored to
coincide with stochastic action colors in Figure 3.

Sg

S
0
g

S
00
g

Se1 S
0
e1a1

Se1a1 Se1b2 S
0

e1b2

Se2

S
0
e2a2

Se2a2

S
0
e2a3

Se2a3

S
0

e2b1Se2b1

S
0

e2b3Se2b3

Se3 S
0
e3a3

Se3a3 Se3b1 S
0

e3b1

Figure 2: Our MOMIgen reduction applied to the Min-
Rep problem in Figure 1. e1 = (A1, B1), e2 = (A1, B2),
e3 = (A2, B2). Actions given in solid lines and each option
in O

0 represented in its own color as a dashed line from
initiation to termination states. Notice that a single option
goes from Se3b1 and Se2b1 to Sg .

option is every Sea where Ai is incident to e; The
policy of this option takes the action from S

0
ea to Sea

when in S
0
ea and the action from Se to S

0
ea when in Se.

Symmetrically, for every vertex Bj 2 B and each
b 2 ⌃B we have an option O(Bj , b): The initiation set
of this option is every Seb where e is incident to Bj ;
The termination set of this option is Sg; The policy of
this option takes the action from Seb to S

0

eb when in
Seb and from S

0

eb to Sg when in S
0

eb.

One should think of choosing option O(v, x) as correspond-
ing to choosing label x for vertex v in the input Min-Rep
instance. Let MOMIgen(MR) be the MDP output given
instance MR of Min-Rep and see Figure 3 for an illustration
of our reduction.

Let OPTMOMIgen be the value of the optimal solution to
MOMIgen(MR) and let OPTMR be the value of the optimal
Min-Rep solution to MR. The following lemmas demon-
strates the correspondence between a MOMIgen and Min-
Rep solution.
Lemma 2. OPTMOMIgen OPTMR

Proof. Given a solution (�A, �B) to MR, define O�A,�B :=
{O(v, x) : v 2 V (G) ^ (�A(v) = x _ �B(v) = x)} as the
corresponding set of options. Let �⇤

A and �
⇤

B be the optimal
solutions to MR which is of cost OPTMR.

We now argue that O�⇤
A,�⇤

B
is a feasible solution to

MOMIgen(MR) of cost OPTMR, demonstrating that the op-

Finding Options that Minimize Planning Time (Appendix)

timal solution to MOMIgen(MR) has cost at most OPTMR.
To see this notice that by construction the MOMIgen cost
of O�⇤

A,�⇤
B

is exactly the Min-Rep cost of (�⇤

A, �
⇤

B).

We need only argue, then, that O�⇤
A,�⇤

B
is feasible for

MOMIgen(MR) and do so now. The value of every state
in MOMIgen(MR) is 1. Thus, we must guarantee that
after 3 iterations of value iteration, every state has value
1. However, without any options every state except each
Se has value 1 after 3 iterations of value iteration. Thus,
it suffices to argue that O�⇤

A,�⇤
B

guarantees that every Se

will have value 1 after 3 iterations of value iteration. Since
(�⇤

A, �
⇤

B) is a feasible solution to MR we know that for every
e = (Ai, Bj) there exists an ā 2 �

⇤

A(Ai) and b̄ 2 �
⇤

B(Bj)
such that (ā, b̄) 2 ⇡e; correspondingly there are options
O(Ai, ā), O(Bj , b̄) 2 O�⇤

A,�⇤
B

. It follows that, given op-
tions O�⇤

A,�⇤
B

from, Se one can take option O(Ai, ā) then
the action from Seā to Seb̄ and then option O(Bj , b̄) to ar-
rive in Sg; thus, after 3 iterations of value iteration the value
of Se is 1. Thus, we conclude that after 3 iterations of value
iteration every state has converged on its value.

We now show that a solution to MOMIgen(MR) corre-
sponds to a solution to MR. For the remainder of this sec-
tion �

O

A (Ai) := {a : O(Ai, a) 2 O} and �
O

B (Bj) := {b :
O(Bj , b) 2 O} is the Min-Rep solution corresponding to
option set O.

Lemma 3. For a feasible solution to MOMIgen(MR), O,

we have (�O

A , �
O

B) is a feasible solution to MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of
(�O

A , �
O

B) is exactly |O|. Thus, we need only prove that
(�O

A , �
O

B) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) 2
E; we wish to show that (�O

A , �
O

B) satisfies e. Since O is
a feasible solution to MOMIgen(MR) we know that after
3 iterations of value iteration every state must converge on
its value. Moreover, notice that the value of every state
in MOMIgen(MR) is 1. Thus, it must be the case that for
every Se there exists a path of length 3 from Se to Sg using
either options or actions. The only such paths are those
that take an option O(Ai, a), then an action from Sea to
Seb then option O(Bj , b) where (a, b) 2 ⇡e. It follows that
a 2 �

O

A (Ai) and b 2 �
O

B (Bj). But since (a, b) 2 ⇡e, we
then know that e is satisfied. Thus, every edge is satisfied
and so (�O

A , �
O

B) is a feasible solution to MR.

Theorem 4.2 Proof. Assume NP 6✓ DTIME(npoly logn) and
for the sake of contradiction that there exists an " > 0 for
which polynomial-time algorithm AMOMIgen can 2log

1�" n-

approximate MOMIgen. We use AMOMIgen to 2log
1�"0 ñ

approximate Min-Rep for a fixed constant "
0
> 0 in

polynomial-time, thereby contradicting Lemma 1. Again,

ñ is the number of vertices in the graph of the Min-Rep
instance.

We begin by noting that the relevant quantities in
MOMIgen(MR) are polynomially-bounded. Notice that
the number of states n in the MDP in MOMIgen(MR) is
at most O(ñ2

|⌃A||⌃B |) = ñ
c for some fixed constant c

by the aforementioned assumption that ⌃A and ⌃B are
polynomially-bounded in ñ.3

Our polynomial-time approximation algorithm to approxi-
mate instance MR of Min-Rep is as follows: Run AMOMIgen
on MOMIgen(MR) to get back option set O. Return
(�O

A , �
O

B) as defined above as our solution to MR.

We first argue that our algorithm is polynomial-time in
ñ. However, notice that for each vertex, we create a
polynomial number of states. Thus, the number of states
in MOMIgen(MR) is polynomially-bounded in ñ and so
AMOMIgen runs in time polynomial in ñ. A polynomial
runtime of our algorithm immediately follows.

We now argue that our algorithm is a 2log
1�"0 ñ-

approximation for Min-Rep for some "
0
> 0. Apply-

ing Lemma 3, the approximation of AMOMIgen and then
Lemma 2, we have that (�O

A , �
O

B) is a feasible solution for
MR with cost

costMin-Rep(�
O

A , �
O

B) = |O|

 2log
1�" nOPTMOMIgen

 2log
1�" nOPTMR

Thus, (�O

A , �
O

B) is a 2log
1�" n approximation for the opti-

mal Min-Rep solution where n is the number of states in
the MDP of MOMIgen(MR). Now recalling that n ñ

c

for fixed constant c. We therefore have that (�O

A , �
O

B) is a
2log

1�" ñc

= 2c
1�" log1�" ñ

 c
0
· 2log

1�" ñ approximation
for a constant c0. Choosing " sufficiently small, we have
that c0 · 2log

1�" ñ
 2log

1�"0 ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log
1�"0 ñ-

approximation for Min-Rep for "
0
> 0, thereby contra-

dicting Lemma 1. We conclude that MOMIgen cannot be
2log

1�✏ n-approximated.

A.3. Hardness of Approximation of MOMI with
Stochastic MDP

We now show our hardness of approximation of 2log
1�✏ n for

MOMI, Theorem 4.3. We will notably use the stochasticity
3It is also worth noticing that since we create at most

O(ñ|⌃A| + ñ|⌃B |) options, the total number of options in O
0

is at most polynomial in ñ.

Finding Options that Minimize Planning Time (Appendix)

of the input MDP to show this result.4

We begin by describing our reduction from an instance of
Min-Rep to an instance of MOMI. The intuition behind our
reduction is as follows. As in our reduction for MOMIgen
we will have vertex for each edge in our Min-Rep instance
and reward will propagate quickly to that vertex when value
iteration is run only if the options corresponding to a satis-
fying assignment for that edge are chosen. The challenge,
however, is that since our options are now only point options
(whereas in MOMIgen they were arbitrary options) it seems
that we can no longer constrain a solution to choose options
exactly corresponding to a feasible Min-Rep solution.

To solve this issue we critically use stochasticity. Whether
or not a given edge in a Min-Rep is satisfied is an or of
ands: A fixed edge is satisfied when one of its satisfying
assignments is met (an or) and a given satisfying assignment
is met when both endpoints have the right labels (an and).
We will exploit the fact that the value of a state in an MDP
is a max over actions to encode the “or” in Min-Rep and
we will use the fact that in a stochastic MDP the value of a
(state, action) pair is the sum over states to encode the “and”
in Min-Rep.

More formally, our reduction is as follows. Consider in-
stance MR of Min-Rep given by G = (A [B,E), ⌃A, ⌃B

and {⇡e}. Our instance of MOMI is as follows where � = 1
and l = 2.5

• State space We have a goal state Si for each Ai 2 A.
Again, let SatA(e) consist of all a 2 ⌃A such that a
is in some assignment in ⇡e. For each Ai 2 A and
a 2 SatA(e) we will we add to our MDP states Sia

and S
0

ia. We symmetrically do the same for all states
in ⌃B . For each e 2 E we will also add a state Se.6

• Actions and Transitions Every Sia state has a sin-
gle action to S

0

ia and every Sia state has a single ac-
tion to Si. The same symmetrically holds for states
from a Bj 2 B. Every Se for e = (Ai, Bj) has
|⇡(Ai,Bj)| actions associated with it, namely {↵(a,b)}

where (a, b) 2 ⇡(Ai,Bj). Action ↵(a,b) has a probabil-
ity .5 of transitioning to state Sia and a probability .5
of transitioning to state Sjb.

• Reward The reward of arriving in any Si or Sj for
Ai 2 A or Bj 2 B is 1 and 0 for every other state.

4We may assume without loss of generality " < .5 throughout
this section; rewards in our reduction can be re-scaled to handle
larger ".

5It is easy to generalize these results to l � 3 by replacing
edges with paths.

6It is not hard to see that this construction can be modified so
that we have only a single goal state if need be; we need only set
every Si and Sj to be the same state. We assume multiple goal
states for ease of exposition.

SA1

S
0

A1a1
SA1a1

S
0

A1a2
SA1a2

S
0

A1a3
SA1a3

SA2
S
0

A2a3
SA2a3

SB1b2 S
0

B1b2 SB1

SB2b1 S
0

B2b1

SB2b3 S
0

B2b3 SB2

Se1

Se2

Se3

Figure 3: Our MOMI reduction applied to the Min-Rep
problem in Figure 1. e1 = (A1, B1), e2 = (A1, B2), e3 =
(A2, B2). Stochastic options colored according to the pair in
⇡e to which they correspond, branching into the two states
in which they arrive with equal probability. Deterministic
action given as solid black arcs. Possible point options given
as dashed arcs.

Notice that no point options have Se as an initialization
state since any such option would have a .5 probability
of never terminating (and we assume our options always
terminate). See Figure 3 for an illustration of our reduction.
One should think of choosing a point option from Sia to
Si as corresponding to choosing label a for Ai in the input
Min-Rep instance. The same holds for label b for Bj and
choosing a point option from Sjb to Sj . Let MOMI(MR) be
the MOMI instance output by our reduction given instance
MR of Min-Rep.

We now demonstrate that our reduction allows us to show
that MOMI cannot be 2log

1�" n-approximated for any " > 0.
Let OPTMOMI be the value of the optimal solution to
MOMI(MR) and let OPTMR be the value of the optimal
Min-Rep solution to MR. The following lemmas demon-
strates the correspondence between a MOMI and Min-Rep
solution.

Lemma 4. OPTMOMI OPTMR

Proof. Our proof translates between point options in our
reduction and assignments in the input Min-Rep instance in
the natural way. Given a solution (�A, �B) to MR, define
O�A,�B as consisting of all point options from Sia to Si

if a 2 �A(Ai) and all points options from Sjb to Sj if
b 2 �B(Bj). Let �⇤

A and �
⇤

B be the optimal solutions to MR
which is of cost OPTMR.

We claim that O�⇤
A,�⇤

B
is a feasible solution to MOMI(MR)

of cost OPTMR, demonstrating that the optimal solution to
MOMI(MR) has cost at most OPTMR. To see this notice
that by construction the MOMI cost of O�⇤

A,�⇤
B

is exactly

Finding Options that Minimize Planning Time (Appendix)

the Min-Rep cost of �⇤

A, �
⇤

B .

We need only argue, then, that O�⇤
A,�⇤

B
is feasible for

MOMI(MR) and do so now. Notice that the value of every
state in MOMI is 1. Thus, we must guarantee that after 2
iterations of value iteration, every state has value 1. How-
ever, without any options every state except for Se where
e 2 E has value 1 after 2 iterations of value iteration. Thus,
it suffices to argue that O�⇤

A,�⇤
B

guarantees that every Se

will have value 1 after 2 iterations of value iteration. Since
(�⇤

A, �
⇤

B) is a feasible solution to MR we know that for ev-
ery e = (Ai, Bj) there exists ā 2 �

⇤

A(Ai) and b̄ 2 �
⇤

B(Bj)
such that (ā, b̄) 2 ⇡e; correspondingly there is some action
from Se with a .5 probability of resulting in state Siā and
a .5 probability of resulting in state Sjb̄ where O�⇤

A,�⇤
B

has
a point option from Siā to Si and a point options from Sjb̄

to Sj . That is, V1(Siā) = 1 and V1(Sjb̄) = 1. Thus, after
one iteration of value iteration the values of Siā and Sjb̄ are
both 1 and so after two iterations of value iteration the value
of Se is

V2(Se) = max
↵(a,b)

.5 · (V1(Sia)) + .5 · (V1(Sjb))

� .5 · (V1(Siā)) + .5 · (V1(Sjb̄))

= 1.

Thus, V2(Se) = 1 for every Se and so we conclude that after
two iterations of value iteration every state has converged
on its value.

We now show that a solution to MOMI(MR) corresponds
to a solution to MR. For the remainder of this section let
�
O

A (Ai) := {a : O(Sja, Sj) 2 O} and �
O

B (Bj) := {b :
O(Sjb, Sj) 2 O} where for the remainder of this section
O(S, S0) stands for a point option with initiation state S and
termination state S

0.
Lemma 5. For any feasible solution O to MOMI(MR) we

have (�O

A , �
O

B) is a feasible solution to MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of
(�O

A , �
O

B) is exactly |O|. Thus, we need only prove that
(�O

A , �
O

B) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) 2
E; we wish to show that (�O

A , �
O

B) satisfies e. Since O is a
feasible solution we know that after two iterations of value
iteration every state must converge on its value (up to an ✏

factor which we can ignore by our above assumption that
" < .5). Moreover, notice that the value of every state in
MOMI(MR) is 1. Thus, it must be the case that for every
Se we have V2(Se) = 1 for e = (Ai, Bj). It follows, then,
that there is some action ↵(ā,b̄) where (ā, b̄) 2 ⇡(Ai,Bj) such
that

1 = V2(Se) = .5 · (V1(Siā)) + .5 · (V1(Sjb̄)).

Since the value of every state is at most 1, it follows that
V1(Siā) = V1(Sjb̄) = 1. However, since V1(Siā) and
V1(Sjb̄) are both two hops from the only goal reachable
from them (Si and Sj respectively) it must be the case that
there is some point option from Siā to Si and Sjb̄ to Sj .
Thus, by definition of (�O

A , �
O

B) we then have ā 2 �
O

A and
b̄ 2 �

O

B . Since (ā, b̄) 2 ⇡(Ai,Bj) it follows that arbitrary
edge e = (Ai, Bj) is satisfied. Thus, every edge in E is
satisfied and so (�O

A , �
O

B) is a feasible solution for MR.

Finally, we conclude the hardness of approximation of
MOMI.

Theorem 4.3 Proof. Assume NP 6✓ DTIME(npoly logn) and
for the sake of contradiction that there exists an " > 0 for
which a polynomial-time algorithm AMOMI can 2log

1�" n-
approximate MOMI. We use AMOMI to 2log

1�"0 ñ approx-
imate Min-Rep for a fixed constant "0 > 0 in polynomial-
time in ñ, thereby contradicting Lemma 1. Again, ñ is the
number of vertices in the graph of the Min-Rep instance.

We begin by noting that the relevant quantities in
MOMI(MR) are polynomially-bounded. Let ñ := |A| +
|B| be the number of vertices in our MR instance. Notice
that the number of states in the MDP, n, in our MOMI(MR)
instance is at most O(ñ+2|A||⌃A|+ |B||⌃B |+ |E|) ñ

c

for some fixed constant c by the aforementioned assumption
that ⌃A and ⌃B are polynomially-bounded in ñ.7

Our polynomial-time approximation algorithm to approxi-
mate instance MR of Min-Rep is as follows: Run AMOMI
on MOMI(MR) to get back option set O. Return (�O

A , �
O

B)
as defined above as our solution to MR.

We first argue that our algorithm is polynomial time in
ñ. For each vertex in MR, we create a polynomial num-
ber of states and actions. Thus, the number of states in
MOMI(MR) is polynomially-bounded in ñ and so AMOMI
runs in time polynomial in ñ. A polynomial runtime of our
algorithm immediately follows.

We now argue that our algorithm is a 2log
1�"0 ñ-

approximation for Min-Rep for some "
0
> 0. Applying

Lemma 5, the approximation of AMOMI and then Lemma 4,
we have that the Min-Rep cost of (�O

A , �
O

B) is

costMin-Rep(�
O

A , �
O

B) = |O|

 2log
1�" nOPTMOMI

 2log
1�" nOPTMR

Thus, (�O

A , �
O

B) is a 2log
1�" n approximation for the opti-

7It is worth noting, also, that since we create at most
P

e |⇡e|

actions for any state, the number of total actions in our MDP is at
most polynomial in ñ.

Finding Options that Minimize Planning Time (Appendix)

mal Min-Rep solution where n is the number of states in
the MDP of MOMI(MR). Now recalling that n ñ

c

for fixed constant c. We therefore have that (�O

A , �
O

B) is a
2log

1�" ñc

= 2c
1�" log1�" ñ

 c
0
· 2log

1�" ñ approximation
for a constant c0. Choosing " sufficiently small, we have
that c0 · 2log

1�" ñ
 2log

1�"0 ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log
1�"0 ñ-

approximation for Min-Rep for "
0
> 0, thereby contra-

dicting Lemma 1. We conclude that MOMI cannot be
2log

1�✏ n-approximated.

A.4. A-MIMO

In this subsection we show the following theorem (we show
Theorem 5 later):
Theorem 6. A-MIMO has following properties:

1. A-MIMO runs in polynomial time.

2. If the MDP is deterministic, it has a bounded subopti-

mality of O(log⇤ k).

3. The number of iterations to solve the MDP using the

acquired options is upper bounded by P (C).

Theorem 6.1. A-MIMO runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time. To compute d

we need to solve MDPs at most |S| times. Thus, it runs in
polynomial time.

(2) The approximation algorithm we deploy for solving
the asymmetric-k center which runs in polynomial time
(Archer, 2001). Because the procedure by Archer (2001)
terminates immediately after finding a set of options which
guarantees the suboptimality bounds, it tends to find a set of
options smaller than k. In order to use the rest of the options
effectively within polynomial time, we use a procedure
Expand to greedily add a few options at once until it finds
all k options. We enumerate all possible set of options of
size r = dlog ke (if |O|+log k > k then we set r = k�|O|)
and add a set of options which minimizes ` (breaking ties
randomly) to the option set O. We repeat this procedure
until |O| = k. This procedure runs in polynomial time. The
number of possible option set of size r is rCn = O(nr) =
O(k). We repeat this procedure at most dk/ log ke times,
thus the total computation time is bounded by O(k2/ log k).

(3) Immediate.

Therefore, A-MIMO runs in polynomial time.

Before we show that it is sufficient to consider a set of
options with its terminal state set to the goal state of the
MDP.

Lemma 6. There exists an optimal option set for MIMO

and MOMI with all terminal state set to the goal state.

Proof. Assume there exists an option with terminal state set
to a state other than the goal state in the optimal option set
O. By triangle inequality, swapping the terminal state to
the goal state will monotonically decrease d(s, g) for every
state. By swapping every such option we can construct an
option set O0 with L✏,V0(O

0) L✏,V0(O).

Lemma imply that discovering the best option set among
option sets with their terminal state fixed to the goal state is
sufficient to find the best option set in general. Therefore,
our algorithms seek to discover options with termination
state fixed to the goal state.

Using the option set acquired, the number of iterations to
solve the MDP is bounded by P (C). To prove this we first
generalize the definition of the distance function to take a
state and a set of states as arguments d✏ : S ⇥ 2S ! N.
Let d✏(s, C) the number of iterations for s to converge ✏-
optimal if every state s

0
2 C has converged to ✏-optimal:

d✏(s, C) := min(d0✏(s), 1 + d
0
✏(s, C)) � 1. As adding an

option will never make the number of iterations larger,

Lemma 7.
d(s, C) min

s02C

d(s, s0). (1)

Using this, we show the following proposition.

Theorem 6.2. The number of iterations to solve the MDP

using the acquired options is upper bounded by P (C).

Proof. P (C) = maxs2S minc2C d(s, c) �

maxs2S d(s, C) = L✏,V0(O) (using Equation 1). Thus
P (C) is an upper bound for L✏,V0(O).

The reason why P (C) does not always give us the exact
number of iterations is because adding two options starting
from s1, s2 may make the convergence of s0 faster than
d(s0, s1) or d(s0, s2). Example: Figure 4 is an example
of such an MDP. From s0 it may transit to s1 and s2 with
probability 0.5 each. Without any options, the value function
converges to exactly optimal value for every state with 3
steps. Adding an option either from s1 or s2 to g does not
shorten the iteration for s0 to converge. However, if we
add two options from s1 and s2 to g, s0 converges within 2
steps, thus the MDP is solved with 2 steps.

The equality of the statement 1 holds if the MDP is determin-
istic. That is, d(s, C) = mins02C d(s, s0) for deterministic
MDP.

Theorem 6.3. If the MDP is deterministic, it has a bounded

suboptimality of O(log⇤ k).

Finding Options that Minimize Planning Time (Appendix)

s0

s1 s2

s3

g

Figure 4: An example of an MDP where d(s, C) <

mins02C d(s, s0). Here the transition induced by the op-
timal policy is stochastic, thus from s0 one may go to s1

and s2 by probability 0.5 each. Either adding an option
from s1 or s2 to g does not make the convergence faster, but
adding both makes it faster.

Proof. First we show P (C⇤) = L✏,V0(O
⇤) for de-

terministic MDP. From d(s, C) = mins02C d(s, s0),
P (C⇤) = maxs2S minc2C⇤ d(s, c) = maxs2S d(s, C⇤) =
L✏,V0(O

⇤).

The asymmetric k-center solver guarantees that the out-
put C satisfies P (C) c(log⇤ k +O(1))P (C⇤) where n is
the number of nodes (Archer, 2001). Let MIMO(M, ✏, k)
be an instance of MIMO. We convert this instance to an
instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center
with the approximation algorithm, we get a solution C

which satisfies P (C) c(log⇤ k +O(1))P (C⇤). Thus, the
output of the algorithm O satisfies L✏,V0(O) = P (C)

c(log⇤ k + O(1))P (C⇤) = c(log⇤ k + O(1))L✏,V0(O
⇤).

Thus, L✏,V0(O) c(log⇤ k + O(1))L✏,V0(O
⇤) is de-

rived.

Proposition 1 (Greedy Strategy). Let an option set O be

a set of point option constructed by greedily adding one

point option which minimizes the number of iterations. An

improvement L✏,V0(;)� L✏,V0(O) by the greedy algorithm

can be arbitrary small (i.e. 0) compared to the optimal

option set.

Proof. We show by the example in a shortest-path problem
in Figure 5. The MDP can be solved within 4 iterations
without options: L✏,V0(;) = 4. With an optimal option
set of size k = 2 the MDP can be solved within 2 itera-
tions: L✏,V0(O

⇤) = 2 (an initiation state of each option
in optimal option set is denoted by ⇤ in the Figure). On
the other hand, a greedy strategy may not improve L at
all. No single point option does not improve L. Let’s say
we picked a point option from s1 to g. Then, there is no
single point option we can add to that option to improve
L in the second iteration. Therefore, the greedy procedure
returns O which has L✏,V0(;)� L✏,V0(O) = 0. Therefore,

(L✏,V0(;) � L✏,V0(O))/(L✏,V0(;) � L✏,V0(O
⇤)) can be ar-

bitrary small non-negative value (i.e. 0).

⇤

s1

⇤ g

Figure 5: Example of MIMO where the improvement of
a greedy strategy can be arbitrary small compared to the
optimal option set.

A.5. A-MOMI

In this subsection we show the following theorem:
Theorem 5. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.

2. It guarantees that the MDP is solved within ` iterations

using the option set acquired by A-MOMI O.

3. If the MDP is deterministic, the option set is at most

O(log n) times larger than the smallest option set pos-

sible to solve the MDP within ` iterations.

Theorem 5.1. A-MOMI runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time (Littman et al.,
1995). To compute d we need to solve MDPs at most |S|
times. Thus, it runs in polynomial time.

(4) We solve the set cover using a polynomial time approxi-
mation algorithm (Chvatal, 1979) which runs in O(n3), thus
run in polynomial time.

(2), (3), and (5) Immediate.

Theorem 5.2. A-MOMI guarantees that the MDP is

solved within ` iterations using the option set O.

Proof. A state s 2 X
+
g reaches optimal within ` steps by

definition. For every state s 2 S \X
+
g , the set cover guar-

antees that we have Xs0 2 C such that d(s, s0) < `. As
we generate an option from s

0 to g, s0 reaches to optimal
value with 1 step. Thus, s reaches to ✏-optimal value within
d(s, s0) + 1 `. Therefore, every state reaches ✏-optimal
value within ` steps.

Theorem 5.3. If the MDP is deterministic, the option set is

at most O(log n) times larger than the smallest option set

possible to solve the MDP within ` iterations.

Finding Options that Minimize Planning Time (Appendix)

Proof. Using a suboptimal algorithm by Chvatal (1979) we
get C such that |C| O(log n)|C⇤

|. Thus, |O| = |C|

O(log n)|C⇤
| = O(log n)|O⇤

|.

Appendix: Experiments
We show the figures for experiments. Figure 6 shows the
options found by solving MIMO optimally/suboptimally in
four room domain. Figure 7 shows the options in 9x9 grid
domain.

References
Archer, A. Two O(log* k)-approximation algorithms for the

asymmetric k-center problem. In International Confer-

ence on Integer Programming and Combinatorial Opti-

mization, pp. 1–14, 2001.

Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova,
S., and Woodruff, D. P. Transitive-closure spanners. SIAM

Journal on Computing, 41(6):1380–1425, 2012.

Chvatal, V. A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3):233–235, 1979.

Dinitz, M., Kortsarz, G., and Raz, R. Label cover instances
with large girth and the hardness of approximating basic
k-spanner. In International Colloquium on Automata,

Languages, and Programming, pp. 290–301. Springer,
2012.

Dinur, I. and Safra, S. On the hardness of approximating
label-cover. Information Processing Letters, 89(5):247–
254, 2004.

Kortsarz, G. On the hardness of approximating spanners.
Algorithmica, 30(3):432–450, 2001.

Littman, M. L., Dean, T. L., and Kaelbling, L. P. On the
complexity of solving Markov decision problems. In
Proceedings of the Eleventh Conference on Uncertainty

in Artificial Intelligence, pp. 394–402, 1995.

Raz, R. and Safra, S. A sub-constant error-probability low-
degree test, and a sub-constant error-probability pcp char-
acterization of np. In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing, pp.
475–484. ACM, 1997.

Finding Options that Minimize Planning Time (Appendix)

1opt (a) optimal k = 1 2opt (b) optimal k = 2 3opt (c) optimal k = 3 4opt (d) optimal k = 4

1subopt (e) approx. k = 1 2subopt (f) approx. k = 2 3subopt (g) approx. k = 3
4sub_opt

(h) approx. k = 4

4betweenness
(i) Betweenness

4eigen
(j) Eigenoptions

Figure 6: Comparison of the optimal point options vs. options generated by the approximation algorithm A-MIMO. We
observed that the approximation algorithm is similar to that of optimal options. Note that optimal option set is not unique:
there can be multiple optimal option set, and we are visualize one of them returned by the solver.

G

1sub_opt

(a) optimal k = 1

2opt

(b) optimal k = 2

3opt

(c) optimal k = 3

1opt
(d) approx. k = 1

G

2subopt

(e) approx. k = 2

3subopt

(f) approx. k = 3

Figure 7: Comparison of the optimal point options for planning vs. bottleneck options proposed for reinforcement learning
in the four room domain. Initiating conditions are shown in blue, the goal in green.

