
Goal-Based Action Priors

David Abel, D. Ellis Hershkowitz, Gabriel Barth-Maron,
Stephen Brawner, Kevin O’Farrell, James MacGlashan, Stefanie Tellex

Brown University, Computer Science Department
115 Waterman Street, 4th floor Providence, RI 02912

Abstract

Robots that interact with people must flexibly respond to re-
quests by planning in stochastic state spaces that are often too
large to solve for optimal behavior. In this work, we develop a
framework for goal and state dependent action priors that can
be used to prune away irrelevant actions based on the robot’s
current goal, thereby greatly accelerating planning in a va-
riety of complex stochastic environments. Our framework
allows these goal-based action priors to be specified by an
expert or to be learned from prior experience in related prob-
lems. We evaluate our approach in the video game Minecraft,
whose complexity makes it an effective robot simulator. We
also evaluate our approach in a robot cooking domain that is
executed on a two-handed manipulator robot. In both cases,
goal-based action priors enhance baseline planners by dra-
matically reducing the time taken to find a near-optimal plan.

1 Introduction
Robots operating in unstructured, stochastic environments
such as a factory floor or a kitchen face a difficult planning
problem due to the large state space and the very large set
of possible tasks (Bollini et al. 2012; Knepper et al. 2013).
A powerful and flexible robot such as a mobile manipulator
in the home has a very large set of possible actions, any of
which may be relevant depending on the current goal (for
example, robots assembling furniture (Knepper et al. 2013)
or baking cookies (Bollini et al. 2012).) When a robot is
manipulating objects in an environment, an object can be
placed anywhere in a large set of locations. The size of the
state space explodes exponentially with the number of ob-
jects, which bounds the placement problems that the robot
is able to expediently solve. Depending on the goal, any of
these states and actions may be relevant to the solution, but
for any specific goal most of them are irrelevant. For in-
stance, when making brownies, actions related to the oven
and flour are important, while those involving the soy sauce
and sauté pan are not. For a different task, such as stir-frying
broccoli, the robot must use a different set of objects and ac-
tions.

Robotic planning tasks are often formalized as a stochas-
tic sequential decision making problem, modeled as a
Markov Decision Process (MDP) (Thrun, Burgard, and Fox

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two problems from the same domain, where the
agent’s goal is to smelt the gold in the furnace while avoiding
the lava. Our agent is unable to solve the problem on the
right before learning because the state/action space is too
large (since it can place the gold block anywhere). After
learning on simple problems like the one on the left, it can
quickly solve the larger problem.

2008). In these problems, the agent must find a mapping
from states to actions for some subset of the state space that
enables the agent to achieve a goal while minimizing costs
along the way. However, many robotics problems corre-
spond to a family of related MDPs; following STRIPs ter-
minology, these problems come from the same domain, but
each problem may have a different reward function or goal.
For example, Figure 1 shows an example of two problems
with the same goal (smelting gold) and domain (the game
Minecraft (Mojang 2014)).

To confront the state-action space explosion that accom-
panies complex domains, prior work has explored adding
knowledge to the planner, such as options (Sutton, Precup,
and Singh 1999) and macro-actions (Botea et al. 2005; New-
ton, Levine, and Fox 2005). However, while these methods
allow the agent to search more deeply in the state space, they
add non-primitive actions to the planner which increase the
branching factor of the state-action space. The resulting aug-
mented space is even larger, which can have the paradoxical
effect of increasing the search time for a good policy (Jong
2008). Deterministic forward-search algorithms like hierar-
chical task networks (HTNs) (Nau et al. 1999), and tempo-
ral logical planning (TLPlan) (Bacchus and Kabanza 1995;
1999), add knowledge to the planner that greatly increases
planning speed, but do not generalize to stochastic domains.
Additionally, the knowledge provided to the planner by

these methods is quite extensive, reducing the agent’s au-
tonomy.

To address state-action space explosions in robotic plan-
ning tasks, we augment an Object Oriented Markov Deci-
sion Process (OO-MDP) with a specific type of action prior
conditioned on the current state and an abstract goal descrip-
tion. This goal-based action prior enables the robot to prune
irrelevant actions on a state-by-state basis according to the
robot’s current goal, focusing the robot on the most promis-
ing parts of the state space.

Goal-based action priors can be specified by hand or
learned through experience in related problems, making
them a concise, transferable, and learnable means of repre-
senting useful planning knowledge. Our results demonstrate
that these priors provide dramatic improvements for a vari-
ety of planning tasks compared to baselines in simulation,
and are applicable across different state spaces. Moreover,
while manually provided priors outperform baselines on dif-
ficult problems, our approach is able to learn goal-based
action priors from experience on simple, tractable, training
problems that yield even greater performance on the difficult
problems than manually provided priors.

We conduct experiments in the game Minecraft, which
has a very large state-action space, and on a real-world
robotic cooking assistant. Figure 1 shows an example of
two problems from the same domain in the game Minecraft;
the agent learns on simple randomly generated problems
(like the problem in the left image) and tests on new
harder problems from the same domain that it has never
previously encountered (like the problem in the right im-
age). All associated code with this paper may be found at
http://h2r.cs.brown.edu/affordances.

Because we condition on both the state and goal descrip-
tion, there is a strong connection between our priors and the
notion of an affordance. Affordances were originally pro-
posed by (Gibson 1977) as action possibilities prescribed by
an agent’s capabilities in an environment, and have recently
received a lot of attention in robotics research (Koppula and
Saxena 2013; Koppula, Gupta, and Saxena 2013).

In a recent review on the theory of affordances, (Chemero
2003) suggests that an affordance is a relation between the
features of an environment and an agent’s abilities. Our
goal-based action priors are analogously interpreted as a
grounding of Chemero’s interpretation of an affordance,
where the features of the environment correspond to the
goal-dependent state features, and the agent’s abilities cor-
respond to the OO-MDP action set. It is worth noting that
the formalism proposed by Chemero differs from the inter-
pretation of affordance that is common within the robotics
community.

2 Technical Approach
We define a goal-based action prior as knowledge added to
a family of related Markov Decision Processes (MDPs) from
the same domain. An MDP is a five-tuple: 〈S,A, T ,R, γ〉,
where S is a state space; A is the agent’s set of actions; T
denotes T (s′ | s, a), the transition probability of an agent
applying action a ∈ A in state s ∈ S and arriving in
s′ ∈ S;R(s, a, s′) denotes the reward received by the agent

• Object Classes:

– Agent
∗ Location (x, y, z)
∗ Inventory

– Block
∗ Type (Wood, Lava, ...)
∗ Location (x, y, z)
∗ Destructible (True, False)

• Actions: DestroyBlock, UseBlock, Turn-
Left, TurnRight, MoveForward, LookUp,
LookDown, PlaceBlock, Jump

• Transition Dynamics: Movement actions
(Look, Turn, Move) incorrectly apply a dif-
ferent move action 5% of the time.

(a) Domain

Agent is standing at (x, y, z).
Agent has smelted gold.
Agent has acquired ore.
Agent has constructed a tower of height K.
Agent has built a cube with edge length K.
Agent has destroyed K blocks.

(b) Example goals.

Figure 2: Part of the OO-MDP Domain for Minecraft.

for applying action a in state s and transitioning to state s′;
and γ ∈ [0, 1] is a discount factor that defines how much
the agent prefers immediate rewards over future rewards
(the agent prefers to maximize immediate rewards as γ de-
creases). MDPs may also include terminal states that cause
all action to cease once reached (such as in goal-directed
tasks).

Goal-based action priors build on Object-Oriented MDPs
(OO-MDPs) (Diuk, Cohen, and Littman 2008). An OO-
MDP efficiently represents the state of an MDP through the
use of objects and predicates. An OO-MDP state is a collec-
tion of objects, O = {o1, . . . , oo}. Each object oi belongs
to a class, cj ∈ {c1, . . . , cc}. Every class has a set of at-
tributes, Att(c) = {c.a1, . . . , c.aa}, each of which has a
value domain, Dom(c.a), of possible values.

OO-MDPs enable planners to use predicates over classes
of objects. That is, the OO-MDP definition also includes a
set of predicates P that operate on the state of objects to pro-
vide additional high-level information about the MDP state.
Since predicates operate on collections of objects, they gen-
eralize beyond specific states within the domain. For in-
stance, in Minecraft, a predicate checking the contents of
the agent’s inventory generalizes to many states across many
Minecraft tasks. We capitalize on this generalization by us-
ing OO-MDP predicates as features for action pruning.

Following STRIPs-like terminology, we define a domain
as an OO-MDP for which the reward function and termi-
nal states are unspecified. Furthermore, a problem of the
domain is a completion of the domain’s underspecified OO-
MDP, wherein a reward function, terminal states, and an ini-
tial state are provided. We are concerned with OO-MDPs
where the reward function is goal-directed; the agent re-
ceives a negative reward at each time step that motivates it
to reach the goal state, which is terminal for all problems. A
goal, g, is a predicate operating on states that specifies the
terminal states of a problem. Figure 2 shows part of the OO-
MDP domain definition for Minecraft that we used and the
types of goals used in different Minecraft problems that we
tested. Figure 3 shows three example initial states and goals
for simple Minecraft problems.

(a) Mine the gold
and smelt it in the
furnace

(b) Dig down to the
gold and mine it,
avoiding lava.

(c) Navigate to the
goal location, avoid-
ing lava.

Figure 3: Three different problems from the Minecraft do-
main.

Modeling the Optimal Actions
Our goal is to formalize planning knowledge that allows an
agent to avoid searching suboptimal actions in each state
based on the agent’s current goal. We define the optimal
action set, A∗, for a given state s and goal G as:

A∗ = {a | Q∗G(s, a) = V ∗G(s)} , (1)

where Q∗G(s, a) and V ∗G(s) represent the optimal Q function
and value function, respectively.

We aim to learn a probability distribution over the opti-
mality of each action for a given state (s) and goal (G). Thus,
we want to infer a Bernoulli distribution for each action’s
optimality:

Pr(ai ∈ A∗ | s,G) (2)

for i ∈ {1, . . . , |A|}, where A is the OO-MDP action space
for the domain.

To generalize across specific low-level states, we ab-
stract the state and goal into a set of n paired preconditions
and goals, {(p1, g1) . . . (pn, gn)}. We abbreviate each pair
(pj , gj) to δj for simplicity. Each precondition p ∈ P is a
predicate in the set of predicates P defined by the OO-MDP
domain, and G is a goal which is a predicate on states that
is true if and only if a state is terminal. For example, a pred-
icate might be nearTrench(agent) which is true when the
agent is standing near a trench. In general a precondition
is an arbitrary logical expression of the state; in our experi-
ments we used unary predicates defined in the OO-MDP do-
main. A goal specifies the sort of problem the agent is trying
to solve, such as the agent retrieving an object of a certain
type from the environment, reaching a particular location, or
creating a new structure. Depending on the agent’s current
goal, the relevance of each action changes dramatically. We
rewrite Equation 2:

Pr(ai ∈ A∗ | s,G) = Pr(ai ∈ A∗ | s,G, δ1 . . . δn). (3)

We introduce the indicator function f , which returns 1 if
and only if the given δ’s predicate is true in the provided
state s, and δ’s goal is entailed by the agent’s current goal,
G:

f(δ, s,G) =

{
1 δ.p(s) ∧ δ.g(G)

0 otherwise.
(4)

Evaluating f for each δj given the current state and goal
gives rise to a set of binary features, φj = f(δj , s,G), which

we use to reformulate our probability distribution:

Pr(ai ∈ A∗ | s,G, δ1 . . . δn)

= Pr(ai ∈ A∗ | φ1, . . . , φn) (5)

This distribution may be modeled in a number of ways,
making this approach quite flexible. One model that can be
easily specified by an expert is an OR model. In the OR
model some subset of the features (φi ⊂ φ) are assumed to
cause action ai to be optimal; as long as one of the features
is on, the probability that ai is optimal is one. If none of
the features are on, then the probability that ai is optimal is
zero. More formally,

Pr(ai ∈ A∗ | φ1, . . . , φn) = φi1 ∨ ... ∨ φim, (6)

where m is the number of features that can cause ai to be
optimal (m = |φi|).

In practice, we do not expect such a distribution to be
reflective of reality; if it were, then no planning would be
needed because a full policy would have been specified.
However, it does provide a convenient way for a designer to
provide conservative background knowledge. Specifically, a
designer can consider each precondition-goal pair and spec-
ify the actions that could be optimal in that context, ruling
out actions that would be known to be irrelevant or depen-
dent on other state features being true. For example, Table 1
shows example expert-provided conditions that we used in
our Minecraft experiments.

Because the OR model is not expected to be reflective of
reality and because of other limitations (such as not allowing
support for an action to be provided when a feature is off),
the model is not practical for learning. Learned priors have
the potential to outperform hand-coded priors by more flexi-
bly adapting to the features that predict optimal actions over
a large training set. An alternative more expressive model
that does lend itself to learning is Naive Bayes. We first fac-
tor using Bayes’ rule, introducing a parameter vector θi of
feature weights:

=
Pr(φ1, . . . , φn, | ai ∈ A∗, θi) Pr(ai ∈ A∗ | θi)

Pr(φ1, . . . , φn|θi)
(7)

Next we assume that each feature is conditionally inde-
pendent of the others, given whether the action is optimal:

=

∏n
j=1 Pr(φj | ai ∈ A∗, θi) Pr(ai ∈ A∗ | θi)

Pr(φ1, . . . , φn|θi)
(8)

Finally, we define the prior on the optimality of each ac-
tion to be the fraction of the time each action was optimal
during training. Although we only explore the OR and Naive
Bayes models in this work, other models, like logistic re-
gression and Noisy-OR, could also be used.

Learning the Optimal Actions
Using the above model allows us to learn goal-based ac-
tion priors through experience. We provide a set of training
worlds from the domain (W), for which the optimal policy,

π, may be tractably computed using existing planning meth-
ods. We compute model parameters using the small train-
ing worlds, and then evaluate performance on a different set
of much harder problems at test time. To compute model
parameters using Naive Bayes, we compute the maximum
likelihood estimate of the parameter vector θi for each ac-
tion using the policy.

Under our Bernouli Naive Bayes model, we estimate the
parameters θi,0 = Pr(ai) and θi,j = Pr(φj |ai), for j ∈
{1, . . . , n}, where the maximum likelihood estimates are:

θi,0 =
C(ai)

C(ai) + C(āi)
(9)

θi,j =
C(φj , ai)

C(ai)
(10)

Here, C(ai) is the number of observed occurrences where
ai was optimal across all worlds W , C(āi) is the num-
ber of observed occurrences where ai was not optimal, and
C(φj , ai) is the number of occurrences where φj = 1 and
ai was optimal. We determined optimality using the synthe-
sized policy for each training world, πw. More formally:

C(ai) =
∑
w∈W

∑
s∈w

(ai ∈ πw(s)) (11)

C(āi) =
∑
w∈W

∑
s∈w

(ai 6∈ πw(s)) (12)

C(φj , ai) =
∑
w∈W

∑
s∈w

(ai ∈ πw(s) ∧ φj == 1) (13)

During the learning phase, the agent learns which actions
are useful under different conditions. For example, consider
the three different problems shown in Figure 3. During train-
ing, we observe that the destroy action is often optimal
when the agent is looking at a block of gold ore and the
agent is trying to smelt gold ingots. Likewise, when the
agent is not looking at a block of gold ore in the smelting
task we observe that the destroy action is generally not
optimal (i.e. destroying grass blocks is typically irrelevant
to smelting). This information informs the distribution over
the optimality of the destroy action, which is used at test
time to encourage the agent to destroy blocks when trying
to smelt gold and looking at gold ore, but not in other situa-
tions (unless the prior suggests using destroy). Example
learned priors are shown in 2.

At test time, the agent will see different, randomly gener-
ated worlds from the same domain, and use the learned pri-
ors to increase its speed at inferring a plan. For simplicity,
our learning process uses a strict separation between train-
ing and test; after learning is complete our model parameters
remain fixed.

Action Pruning with Goal-Based Action Priors
A planner using a goal-based action prior will prune actions
on a state-by-state basis.

Under the expert specified OR model, when Pr(ai ∈ A∗ |
φ1, . . . , φn) = 0 action ai is pruned from the planner’s con-
sideration. When Pr(ai ∈ A∗ | φ1, . . . , φn) = 1, action ai
remains in the action set to be searched by the planner.

(a) agentLookTowardGoal

(b) trenchInFrontOfAgent

Figure 4: When the agent is looking toward its goal loca-
tion, it is generally better to move forward than do anything
else. Alternatively, when the agent is faced with a trench,
the agent should walk along the trench to look for gaps, or
build a bridge across by looking down and placing blocks.

Precondition Goal Actions

lookingTowardGoal atLocation {move}
lavaInFront atLocation {rotate}
lookingAtGold hasGoldOre {destroy}

Table 1: Example of an expert-provided goal-based action
prior.

When a model like Naive Bayes is used, a less restric-
tive approach must be taken. In this work, we prune ac-
tions whose probability is below some threshold and keep
the rest. Empirically, we found the heuristic of setting the
threshold to 0.2

|A| to be effective (where |A| is the size of the
full action space of the OO-MDP). This threshold is quite
conservative and means that only actions that are extremely
unlikely to be optimal are pruned. In the future, we plan
on exploring stochastic action pruning methods with any-
time planning algorithms, but an advantage to this threshold
pruning approach is that it can be used in a large range of
different planning algorithms including A* (for determinis-
tic domains), Value Iteration, and Real-time Dynamic Pro-
gramming (RTDP) (Barto, Bradtke, and Singh 1995). In this
work, we present results using RTDP.

3 Results
We evaluate our approach using the game Minecraft and
a collaborative robotic cooking task. Minecraft is a 3-D
blocks game in which the user can place, craft, and de-
stroy blocks of different types. Minecraft’s physics and ac-

Planner Bellman Reward CPU

Mining Task
RTDP 17142.1 (±3843) -6.5 (±1) 17.6s (±4)
EP-RTDP 14357.4 (±3275) -6.5 (±1) 31.9s (±8)
LP-RTDP 12664.0 (±9340) -12.7 (±5) 33.1s (±23)

Smelting Task
RTDP 30995.0 (±6730) -8.6 (±1) 45.1s (±14)
EP-RTDP 28544.0 (±5909) -8.6 (±1) 72.6s (±19)
LP-RTDP 2821.9 (±662) -9.8 (±2) 7.5s (±2)

Wall Traversal Task
RTDP 45041.7 (±11816) -56.0 (±51) 68.7s (±22)
EP-RTDP 32552.0 (±10794) -34.5 (±25) 96.5s (±39)
LP-RTDP 24020.8 (±9239) -15.8 (±5) 80.5s (±34)

Trench Traversal Task
RTDP 16183.5 (±4509) -8.1 (±2) 53.1s (±22)
EP-RTDP 8674.8 (±2700) -8.2 (±2) 35.9s (±15)
LP-RTDP 11758.4 (±2815) -8.7 (±1) 57.9s (±20)

Plane Traversal Task
RTDP 52407 (±18432) -82.6 (±42) 877.0s (±381)
EP-RTDP 32928 (±14997) -44.9 (±34) 505.3s (±304)
LP-RTDP 19090 (±9158) -7.8 (±1) 246s (±159)

Table 2: RTDP vs. EP-RTDP vs. LP-RTDP

tion space allow users to create complex systems, includ-
ing logic gates and functional scientific graphing calcula-
tors. Minecraft serves as a model for robotic tasks such as
cooking assistance, assembling items in a factory, object re-
trieval, and complex terrain traversal. As in these tasks, the
agent operates in a very large state-action space in an un-
certain environment. Figure 3 shows three example scenes
from Minecraft problems that we explore. Additionally, we
used expert-provided priors to enable a manipulator robot to
infer helpful actions in response to a person working on a
kitchen task, shown in Figure 6.

Minecraft
Our experiments consist of five common goals in Minecraft:
bridge construction, gold smelting, tunneling through walls,
digging to find an object, and path planning.

The training set consists of 20 randomly generated in-
stances of each goal, for a total of 100 instances. Each
instance is extremely simple: 1,000-10,000 states (small
enough to solve with tabular approaches). The output of our
training process is the model parameter θ, which informs
our goal-based action prior. The full training process takes
approximately one hour run in parallel on a computing grid,
with the majority of time devoted to computing the optimal
value function for each training instance.

The test set consists of 20 randomly generated instances
of the same goal, for a total of 100 instances. Each instance
is extremely complex: 50,000-1,000,000 states (which is far
too large to solve with tabular approaches).

We fix the number of features at the start of training based
on the number predicates defined by the OO-MDP, |P|, and
the number of goals, |G|. We provide our system with a set

Figure 5: Average results from all maps.

of 51 features that are likely to aid in predicting the correct
action across instances.

We use Real-Time Dynamic Programming
(RTDP) (Barto, Bradtke, and Singh 1995) as our base-
line planner, a sampling-based algorithm that does not
require the planner to exhaustively explore states. We
compare RTDP with learned priors RTDP (LP-RTDP), and
expert priors RTDP (EP-RTDP). We terminate each planner
when the maximum change in the value function is less
than 0.01 for 100 consecutive policy rollouts, or the planner
fails to converge after 1000 rollouts. The reward function is
−1 for all transitions, except transitions to states in which
the agent is in lava, where we set the reward to −10. The
goal specifies terminal states, and the discount factor is
γ = 0.99. To introduce non-determinism into our problem,
movement actions (move, rotate, jump) in all experiments
have a small probability (0.05) of incorrectly applying a
different movement action. This noise factor approximates
noise faced by a physical robot that attempts to execute
actions in a real-world domain and can affect the optimal
policy due to the existence of lava pits that the agent can fall
into.

We report the number of Bellman updates executed by
each planning algorithm, the accumulated reward of the av-
erage plan, and the CPU time taken to find a plan. Ta-
ble 2 shows the average Bellman updates, accumulated re-
ward, and CPU time for RTDP, LP-RTDP and EP-RTDP af-
ter planning in 20 different maps of each goal (100 total).
Figure 5 shows the results averaged across all maps. We re-
port CPU time for completeness, but our results were run on
a networked cluster where each node had differing computer
and memory resources. As a result, the CPU results have
some variance not consistent with the number of Bellman
updates in Table 2. Despite this noise, overall the average
CPU time shows statistically significant improvement over-
all with our priors, as shown in Figure 5. Furthermore, we
reevaluate each predicate every time the agent visits a state,
which could be optimized by caching predicate evaluations,
further reducing the CPU time taken for EP-RTDP and LP-
RTDP.

Because the planners terminate after a maximum of 1000
rollouts, they do not always converge to the optimal policy.
LP-RTDP on average finds a comparably better plan (10.6
cost) than EP-RTDP (22.7 cost) and RTDP (36.4 cost), in
significantly fewer Bellman updates (14287.5 to EP-RTDP’s
24804.1 and RTDP’s 34694.3), and in less CPU time (93.1s
to EP-RTDP’s 166.4s and RTDP’s 242.0s). These results in-
dicate that while learned priors provide the largest improve-

ments, expert-provided priors can also significantly enhance
performance. Depending on the domain, expert-provided
priors can add significant value in making large state spaces
tractable without the overhead of supplying training worlds.

For some task types, LP-RTDP finds a slightly worse plan
on average than RTDP (e.g. the mining task). This worse
convergence is due to the fact that LP-RTDP occasionally
prunes actions that are in fact optimal (such as pruning the
destroy action in certain states of the mining task). Ad-
ditionally, RTDP occasionally achieved a faster clock time
because EP-RTDP and LP-RTDP also evaluate several OO-
MDP predicates in every state, adding a small amount of
time to planning.

Temporally Extended Actions and Goal-Based
Action Priors
We compare our approach to temporally extended actions:
macro-actions and options. We conduct these experiments
with the same configurations as our Minecraft experiments.
Domain experts provide the option policies and macro-
actions.

Table 3 indicates the results of comparing RTDP equipped
with macro-actions, options, and goal-based priors across
100 different executions in the same randomly generated
Minecraft worlds. The results are averaged across goals of
each type presented in Table 2. Both macro-actions and op-
tions add a significant amount of time to planning due to
the fact that the options and macro-actions are being reused
in multiple OO-MDPs that each require recomputing the re-
sulting transition dynamics and expected cumulative reward
when applying each option/macro-action (a cost that is typi-
cally amortized in classic options work where the same OO-
MDP state space and transition dynamics are used). This
computational cost might be reduced when using a Monte
Carlo planning algorithm that does not need the full tran-
sition dynamics and expected cumulative reward. Further-
more, the branching factor of the state-action space signif-
icantly increases with additional actions, causing the plan-
ner to run for longer and perform more Bellman updates.
Despite these extra costs in planning time, earned reward
with options was higher than without, demonstrating that our
expert-provided options add value to the system.

With goal-based action priors, the planner finds a better
plan in less CPU time, and with fewer Bellman updates.
These results support the claim that priors can handle the
augmented action space provided by temporally extended
actions by pruning away unnecessary actions, and that op-

Planner Bellman Reward CPU

RTDP 27439 (±2348) -22.6 (±9) 107 (±33)
LP-RTDP 9935 (±1031) -12.4 (±1) 53 (±5)
RTDP+Opt 26663 (±2298) -17.4 (±4) 129(±35)
LP-RTDP+Opt 9675 (±953) -11.5 (±1) 93 (±10)
RTDP+MA 31083 (±2468) -21.7 (±5) 336 (±28)
LP-RTDP+MA 9854 (±1034) -11.7 (±1) 162 (±17)

Table 3: Priors with Temporally Extended Actions

Planner Bellman Reward CPU

Dry Ingredients
RTDP 20000 (±0) -123.1 (±0) 56.0s (±2.9)
EP-RTDP 2457.2 (±53.2) -6.5 (±0) 10.1s (±0.3)

Wet Ingredients
RTDP 19964 (±14.1) -123.0 (±0) 66.6s (±9.9)
EP-RTDP 5873.5 (±53.7) -6.5 (±0) 15.6s (±1.2)

Brownie Batter
RTDP 20000 (±0) -123.4 (±0.7) 53.3s (±2.4)
EP-RTDP 6642.4 (±36.4) -7.0 (±0) 31.9s (±0.4)

Table 4: RTDP vs. EP-RTDP for robotic kitchen tasks

tions and goal-based action priors provide complementary
information.

Cooking Robot
To assess goal-based action priors applied to a real-world
robotic task, we created a cooking domain that requires the
robot to choose helpful actions for a person following a
recipe. The human participant and the robotic companion
are each modeled as separate OO-MDPs. From the robot’s
perspective, the human is just a stochastic element of its OO-
MDP’s transition dynamics.

The robot’s OO-MDP contained three spaces: human
counter, robot counter, sink; four ingredient bowls, two mix-
ing bowls, and two tools that could be in any of the three
spaces, in any configuration. Additionally, the robot’s OO-
MDP contains the following ingredients: cocoa powder,
sugar, eggs, and flour. Each container/tool may occupy one
of three spaces, and each ingredient in one of the containers
is either mixed or unmixed.

Although this fine-grained state space is much larger than
needed for any one recipe, it enables support for a variety of
different recipes, ranging from brownies to mashed potatoes.
Because of its fine-grained nature, our cooking state space
has 4.73× 107 states when configured with the ingredients
and tools necessary to make brownies.

We divide a brownie recipe into three subgoals: combin-
ing and mixing the dry ingredients, combining and mixing

Figure 6: Goal-based action priors enable a robot to effi-
ciently infer helpful actions in very large state spaces, such
as a kitchen.

the wet ingredients, and combining these two mixtures into a
batter. For each subgoal, we provide action priors specific to
the objects used in that subgoal; for example, a whisk should
only be used to mix wet ingredients. We use EP-RTDP to
search for the least-cost plan to complete the recipe. The
robot infers actions such as handing off the whisk to the per-
son to mix the wet ingredients.

In Table 4 we compare between standard RTDP and EP-
RTDP planning for each of the three subgoals. Because
the state-action space is reduced significantly, EP-RTDP can
plan successfully in a short amount of time. Standard RTDP
always encountered the maximum number of rollouts speci-
fied at the maximum depth each time, even with a relatively
small number of objects. Unlike our previous CPU time re-
sults, these experiments were conducted on the same multi-
core computer.

EP-RTDP running on a robot can help a person cook
by dynamically replanning through constant observations.
After observing the placement of a cocoa container in the
robot’s workspace, the robot fetches a wooden spoon to al-
low the person to mix. After observing an egg container, the
robot fetches a whisk to help beat the eggs. The robot dy-
namically resolves failures and accounts for unpredictable
user actions; in the video, the robot fails to grasp the wooden
spoon on the first attempt and must retry the grasp after it
observed no state change.

4 Related Work
This paper builds on previous work published at two work-
shops (Barth-Maron et al. 2014; Abel et al. 2014). In this
section, we discuss the differences between goal-based ac-
tion priors and other forms of knowledge engineering that
have been used to accelerate planning.

Stochastic Approaches
Temporally extended actions are actions that the agent can
select like any other action of the domain, except execut-
ing them results in multiple primitive actions being exe-
cuted in succession. Two common forms of temporally ex-
tended actions are macro-actions (Hauskrecht et al. 1998)
and options (Sutton, Precup, and Singh 1999). Macro-
actions are actions that always execute the same sequence of
primitive actions. Options are defined with high-level poli-
cies that accomplish specific sub tasks. For instance, when
an agent is near a door, the agent can engage the ‘door-
opening-option-policy’, which switches from the standard
high-level planner to running a policy that is crafted to open
doors. Although the classic options framework is not gener-
alizable to different state spaces, creating portable options
is a topic of active research (Konidaris and Barto 2007;
2009; Ravindran and Barto 2003; Andre and Russell 2002;
Konidaris, Scheidwasser, and Barto 2012).

Since temporally extended actions may negatively impact
planning time (Jong 2008) by adding to the number of ac-
tions the agent can choose from in a given state, combining
our priors with temporally extended actions allows for even
further speedups in planning, as demonstrated in Table 3.
In other words, goal-based action priors are complementary
knowledge to options and macro-actions.

Sherstov and Stone (Sherstov and Stone 2005) consid-
ered MDPs for which the action set of the optimal policy
of a source task could be transferred to a new, but similar,
target task to reduce the learning time required to find the
optimal policy in the target task. Goal-based action priors
prune away actions on a state-by-state basis, enabling more
aggressive pruning whereas the learned action pruning is on
per-task level.

Rosman and Ramamoorthy (Rosman and Ramamoorthy
2012) provide a method for learning action priors over a
set of related tasks. Specifically, they compute a Dirich-
let distribution over actions by extracting the frequency that
each action was optimal in each state for each previously
solved task. These action priors can only be used with plan-
ning/learning algorithms that work well with an ε-greedy
rollout policy, while our goal-based action priors can be ap-
plied to almost any MDP solver. Their action priors are only
active for a fraction ε of the time, which is quite small, lim-
iting the improvement they can make to the planning speed.
Finally, as variance in tasks explored increases, the priors
will become more uniform. In contrast, goal-based action
priors can handle a wide variety of tasks in a single prior, as
demonstrated by Table 2.

Heuristics in MDPs are used to convey information about
the value of a given state-action pair with respect to the task
being solved and typically take the form of either value func-
tion initialization (Hansen and Zilberstein 1999), or reward
shaping (Ng, Harada, and Russell 1999). However, heuris-
tics are highly dependent on the reward function and state
space of the task being solved, whereas goal-based action
priors are state space independent and may be learned easily
for different reward functions. If a heuristic can be provided,
the combination of heuristics and our priors may even more
greatly accelerate planning algorithms than either approach
alone.

Previous approaches, such as KnowRob (Tenorth and
Beetz 2012; 2009) have developed complex reasoning sys-
tems designed to integrate existing forms of knowledge from
a variety of sources for use in robotics applications. These
systems emphasize knowledge representation and process-
ing rather than planning. KnowRob, in particular, works “by
exploiting existing sources of knowledge as much as possi-
ble,” as opposed to learning through simulation.

Deterministic Approaches
There have been several attempts at engineering knowledge
to decrease planning time for deterministic planners. These
are fundamentally solving a different problem from what we
are interested in since they deal with non-stochastic prob-
lems, but there are interesting parallels nonetheless.

Hierarchical Task Networks (HTNs) employ task decom-
positions to aid in planning (Erol, Hendler, and Nau 1994).
The agent decomposes the goal into smaller tasks which are
in turn decomposed into smaller tasks. This decomposition
continues until immediately achievable primitive tasks are
derived. The current state of the task decomposition, in turn,
informs constraints which reduce the space over which the
planner searches. At a high level HTNs and goal-based ac-
tion priors both achieve action pruning by exploiting some

form of supplied knowledge. We speculate that the addi-
tional action pruning provided by our approach is comple-
mentary to the pruning offered by HTNs.

One significant difference between HTNs and our plan-
ning system is that HTNs do not incorporate reward into
their planning. Additionally, the degree of supplied knowl-
edge in HTNs far exceeds that of our priors: HTNs require
not only constraints for sub-tasks but a hierarchical frame-
work of arbitrary complexity. Goal-based action priors re-
quire either simple symbolic knowledge, as illustrated in Ta-
ble 1, or a set of predicates for use as features and a means
of generating training instances.

An extension to the HTN is the probabilistic Hierarchical
Task Network (pHTN) (Li et al. 2010). In pHTNs, the under-
lying physics of the primitive actions are deterministic. The
goal of pHTN planning is to find a sequence of determinis-
tic primitive actions that satisfy the task, with the addition of
matching user preferences for plans, which are expressed as
probabilities for using different HTN methods. As a conse-
quence, the probabilities in pHTNs are with regard to proba-
bilistic search rather than planning in stochastic domains, as
we do.

Bacchus and Kabanza (Bacchus and Kabanza 1995; 1999)
provided planners with domain dependent knowledge in the
form of a first-order version of linear temporal logic (LTL),
which they used for control of a forward-chaining plan-
ner. With this methodology, a STRIPS style planner may
be guided through the search space by pruning candidate
plans that falsify the given knowledge base of LTL formu-
las, often achieving polynomial time planning in exponential
space. LTL formulas are difficult to learn, placing depen-
dence on an expert, while we demonstrate that our priors
can be learned from experience.

Models
Our planning approach relies critically on the the ability
of the OO-MDP to express properties of objects in a state,
which is shared by other models such as First-Order MDPs
(FOMDPs) (Boutilier, Reiter, and Price 2001). As a conse-
quence, a domain that can be well expressed by a FOMDP
may also benefit from our planning approach. However
FOMDPs are purely symbolic, while OO-MDPs can repre-
sent states with objects defined by numeric, relational, cat-
egorical, and string attributes. Moreover, OO-MDPs enable
predicates to be defined that are evaluative of the state rather
than attributes that define the state, which makes it easy to
add high-level information without adding complexity to the
state definition and transition dynamics to account for them.
These abilities make OO-MDPs better-suited for the kind of
robotic tasks in which we are interested, since it is common
to have different objects with spatial properties that are best
expressed with numeric values.

5 Conclusion
We propose a novel approach to representing transferable
planning knowledge in terms of goal-based action priors.
These priors allow an agent to efficiently prune actions based
on learned or expert provided knowledge, significantly re-
ducing the number of state-action pairs the agent needs to

evaluate in order to act near optimally. We demonstrate
the effectiveness of these priors by comparing RTDP with
and without goal-based action priors in a series of chal-
lenging planning tasks in the Minecraft domain. Further,
we designed a learning process that allows an agent to au-
tonomously learn useful priors that may be used across a
variety of task types, reward functions, and state spaces,
allowing for convenient extensions to robotic applications.
Additionally, we compared the effectiveness of augmenting
planners with priors, temporally extended actions, and the
combination of the two. The results suggest that our pri-
ors may be combined with temporally extended actions to
provide improvements in planning. Lastly, we deploy EP-
RTDP on a robot in a collaborative cooking task, showing
significant improvements over RTDP.

In the future, we hope to automatically discover useful
state space specific subgoals online—a topic of some ac-
tive research (Mcgovern and Barto 2001; Şimşek, Wolfe,
and Barto 2005). Automatic discovery of subgoals would
allow goal-based action priors to take advantage of the task-
oriented nature of our priors, and would further reduce the
size of the explored state-action space by improving the ef-
fectiveness of action pruning. Another promising direction
to explore is an on-line approach to learning as opposed
to the batch style presented here. In an online learning
paradigm, the agent would modify its prior over action opti-
mality after each action execution as opposed to separating
training and test instances. We are also investigating meth-
ods to stochastically prune actions rather than requiring a
hard threshold parameter.

References
Abel, D.; Barth-Maron, G.; MacGlashan, J.; and Tellex, S.
2014. Toward affordance-aware planning. In First Work-
shop on Affordances: Affordances in Vision for Cognitive
Robotics.
Andre, D., and Russell, S. 2002. State abstraction for pro-
grammable reinforcement learning agents. In Eighteenth na-
tional conference on Artificial intelligence, 119–125. Amer-
ican Association for Artificial Intelligence.
Bacchus, F., and Kabanza, F. 1995. Using temporal logic to
control search in a forward chaining planner. In In Proceed-
ings of the 3rd European Workshop on Planning, 141–153.
Press.
Bacchus, F., and Kabanza, F. 1999. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116:2000.
Barth-Maron, G.; Abel, D.; MacGlashan, J.; and Tellex, S.
2014. Affordances as transferable knowledge for planning
agents. In 2014 AAAI Fall Symposium Series.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1):81–138.
Bollini, M.; Tellex, S.; Thompson, T.; Roy, N.; and Rus,
D. 2012. Interpreting and executing recipes with a cook-
ing robot. In Proceedings of International Symposium on
Experimental Robotics (ISER).

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order mdps. In IJCAI, vol-
ume 1, 690–697.
Chemero, A. 2003. An outline of a theory of affordances.
Ecological psychology 15(2):181–195.
Şimşek, O.; Wolfe, A. P.; and Barto, A. G. 2005. Identify-
ing useful subgoals in reinforcement learning by local graph
partitioning. In Proceedings of the 22Nd International Con-
ference on Machine Learning, 816–823.
Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th international conference on Ma-
chine learning, ICML ’08.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
Gibson, J. 1977. The concept of affordances. Perceiving,
acting, and knowing 67–82.
Hansen, E. A., and Zilberstein, S. 1999. Solving markov
decision problems using heuristic search. In Proceedings of
AAAI Spring Symposium on Search Techniques from Prob-
lem Solving under Uncertainty and Incomplete Information.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.;
and Boutilier, C. 1998. Hierarchical solution of markov
decision processes using macro-actions. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intel-
ligence, 220–229. Morgan Kaufmann Publishers Inc.
Jong, N. K. 2008. The utility of temporal abstraction in
reinforcement learning. In Proceedings of the Seventh Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems.
Knepper, R. A.; Tellex, S.; Li, A.; Roy, N.; and Rus, D.
2013. Single assembly robot in search of human partner:
Versatile grounded language generation. In Proceedings of
the HRI 2013 Workshop on Collaborative Manipulation.
Konidaris, G., and Barto, A. 2007. Building portable op-
tions: Skill transfer in reinforcement learning. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence, IJCAI ’07, 895–900.
Konidaris, G., and Barto, A. 2009. Efficient skill learning
using abstraction selection. In Proceedings of the Twenty
First International Joint Conference on Artificial Intelli-
gence, 1107–1112.
Konidaris, G.; Scheidwasser, I.; and Barto, A. 2012. Trans-
fer in reinforcement learning via shared features. The Jour-
nal of Machine Learning Research 98888:1333–1371.
Koppula, H. S., and Saxena, A. 2013. Anticipating hu-
man activities using object affordances for reactive robotic
response. In Robotics: Science and Systems (RSS).
Koppula, H. S.; Gupta, R.; and Saxena, A. 2013. Learning
human activities and object affordances from rgb-d videos.
International Journal of Robotics Research.

Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2010.
Learning probabilistic hierarchical task networks to capture
user preferences. arXiv preprint arXiv:1006.0274.
Mcgovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In In Proceedings of the eighteenth international conference
on machine learning, 361–368. Morgan Kaufmann.
Mojang. 2014. Minecraft. http://minecraft.net.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the 16th International Joint Conference on Artificial In-
telligence - Volume 2, IJCAI’99, 968–973.
Newton, M.; Levine, J.; and Fox, M. 2005. Genetically
evolved macro-actions in ai planning problems. Proceedings
of the 24th UK Planning and Scheduling SIG 163–172.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278–287.
Ravindran, B., and Barto, A. 2003. An algebraic approach to
abstraction in reinforcement learning. In Twelfth Yale Work-
shop on Adaptive and Learning Systems, 109–144.
Rosman, B., and Ramamoorthy, S. 2012. What good
are actions? accelerating learning using learned action
priors. In Development and Learning and Epigenetic
Robotics (ICDL), 2012 IEEE International Conference on,
1–6. IEEE.
Sherstov, A., and Stone, P. 2005. Improving action selection
in mdp’s via knowledge transfer. In Proceedings of the 20th
national conference on Artificial Intelligence, 1024–1029.
AAAI Press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence
112(1):181–211.
Tenorth, M., and Beetz, M. 2009. Knowrobknowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, 4261–4266. IEEE.
Tenorth, M., and Beetz, M. 2012. Knowledge processing
for autonomous robot control. In AAAI Spring Symposium:
Designing Intelligent Robots.
Thrun, S.; Burgard, W.; and Fox, D. 2008. Probabilistic
robotics. MIT Press.

