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Abstract
The combinatorial explosion that plagues plan-
ning and reinforcement learning (RL) algorithms
can be moderated using state abstraction. Pro-
hibitively large task representations can be con-
densed such that essential information is pre-
served, and consequently, solutions are tractably
computable. However, exact abstractions, which
treat only fully-identical situations as equivalent,
fail to present opportunities for abstraction in en-
vironments where no two situations are exactly
alike. In this work, we investigate approximate
state abstractions, which treat nearly-identical
situations as equivalent. We present theoretical
guarantees of the quality of behaviors derived
from four types of approximate abstractions. Ad-
ditionally, we empirically demonstrate that ap-
proximate abstractions lead to reduction in task
complexity and bounded loss of optimality of be-
havior in a variety of environments.

1. Introduction
Abstraction plays a fundamental role in learning. Through
abstraction, intelligent agents may reason about only the
salient features of their environment while ignoring what
is irrelevant. Consequently, agents are able to solve con-
siderably more complex problems than they would be able
to without the use of abstraction. However, exact abstrac-
tions, which treat only fully-identical situations as equiv-
alent, require complete knowledge that is computationally
intractable to obtain. Furthermore, often no two situations
are identical, so exact abstractions are often ineffective.
To overcome these issues, we investigate approximate ab-
stractions that enable agents to treat sufficiently similar sit-
uations as identical. This work characterizes the impact
of equating “sufficiently similar” states in the context of
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planning and RL in Markov Decision Processes (MDPs).
The remainder of our introduction contextualizes these in-
tuitions in MDPs.

Solving for optimal behavior in MDPs in a planning setting
is known to be P-Complete in the size of the state space (Pa-
padimitriou & Tsitsiklis, 1987; Littman et al., 1995). Simi-
larly, many RL algorithms for solving MDPs are known to
require a number of samples polynomial in the size of the
state space (Strehl et al., 2009). Although polynomial run-
time or sample complexity may seem like a reasonable con-
straint, the size of the state space of an MDP grows super-
polynomially with the number of variables that characterize
the domain - a result of Bellman’s curse of dimensional-
ity. Thus, solutions polynomial in state space size are often
ineffective for sufficiently complex tasks. For instance, a
robot involved in a pick-and-place task might be able to
employ planning algorithms to solve for how to manipulate
some objects into a desired configuration in time polyno-
mial in the number of states, but the number of states it
must consider grows exponentially with the number of ob-
jects with which it is working (Abel et al., 2015).

Thus, a key research agenda for planning and RL is lever-
aging abstraction to reduce large state spaces (Andre &
Russell, 2002; Jong & Stone, 2005; Dietterich, 2000; Bean
et al., 2011). This agenda has given rise to methods that
reduce ground MDPs with large state spaces to abstract
MDPs with smaller state spaces by aggregating states ac-
cording to some notion of equality or similarity. In the
context of MDPs, we understand exact abstractions as those
that aggregate states with equal values of particular quan-
tities, for example, optimal Q-values. Existing work has
characterized how exact abstractions can fully maintain op-
timality in MDPs (Li et al., 2006; Dean & Givan, 1997).

The thesis of this work is that performing approximate ab-
straction in MDPs by relaxing the state-aggregation criteria
from equality to similarity achieves polynomially bounded
error in the resulting behavior while offering three benefits.
First, approximate abstractions employ the sort of knowl-
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edge that we expect a planning or learning algorithm to
compute without fully solving the MDP. In contrast, ex-
act abstractions often require solving for optimal behavior,
thereby defeating the purpose of abstraction. Second, be-
cause of their relaxed criteria, approximate abstractions can
achieve greater degrees of compression than exact abstrac-
tions. This difference is particularly important in environ-
ments where no two states are identical. Third, because the
state-aggregation criteria are relaxed to near equality, ap-
proximate abstractions are able to tune the aggressiveness
of abstraction by adjusting what they consider sufficiently
similar states.

We support this thesis by describing four different types
of approximate abstraction functions that preserve near-
optimal behavior by aggregating states on different crite-
ria: e�

Q

⇤
,"

, on similar optimal Q-values, e�model,", on simi-
larity of rewards and transitions, e�bolt,", on similarity of a
Boltzmann distribution over optimal Q-values, and e�mult,",
on similarity of a multinomial distribution over optimal Q-
values. Furthermore, we empirically demonstrate the rela-
tionship between the degree of compression and error in-
curred on a variety of MDPs.

2. MDPs and Sequential Decision Making
An MDP is a problem representation for sequential
decision making agents, represented by a five-tuple:
hS,A, T ,R, �i. Here, S is a finite state space; A is a finite
set of actions available to the agent; T denotes T (s, a, s

0
),

the probability of an agent transitioning to state s

0 2 S af-
ter applying action a 2 A in state s 2 S; R(s, a) denotes
the reward received by the agent for executing action a in
state s; � 2 [0, 1] is a discount factor that determines how
much the agent prefers future rewards over immediate re-
wards. We assume without loss of generality that the range
of all reward functions is normalized to [0, 1]. The solution
to an MDP is called a policy, denoted ⇡ : S 7! A.

The objective of an agent is to solve for the policy that max-
imizes its expected discounted reward from any state, de-
noted ⇡

⇤. We denote the expected discounted reward for
following policy ⇡ from state s as the value of the state
under that policy, V ⇡

(s). We similarly denote the expected
discounted reward for taking action a 2 A and then follow-
ing policy ⇡ from state s forever after as Q⇡

(s, a), defined
by the Bellman Equation as:

Q

⇡

(s, a) = R(s, a)+ �

X

s

0

T (s, a, s

0
)Q

⇡

(s

0
,⇡(s

0
)). (1)

We let RMAX denote the maximum reward (which is 1),
and QMAX denote the maximum Q value, which is RMAX

1��

.

The value function defined under a given policy, denoted

V

⇡

(s), is defined as:

V

⇡

(s) = Q

⇡

(s,⇡(s)). (2)

Lastly, we denote the value and Q functions under the opti-
mal policy as V ⇤ or V ⇡

⇤
and Q

⇤ or Q⇡

⇤
, respectively. For

further background, see Kaelbling et al. (1996).

3. Related Work
Several other projects have addressed similar topics.

3.1. Approximate State Abstraction

Dean et al. (1997) leverage the notion of bisimulation to
investigate partitioning an MDP’s state space into clusters
of states whose transition model and reward function are
within " of each other. They develop an algorithm called
Interval Value Iteration (IVI) that converges to the cor-
rect bounds on a family of abstract MDPs called Bounded
MDPs.

Several approaches build on Dean et al. (1997). Ferns
et al. (2004; 2006) investigated state similarity metrics for
MDPs; they bounded the value difference of ground states
and abstract states for several bisimulation metrics that in-
duce an abstract MDP. This differs from our work which
develops a theory of abstraction that bounds the subopti-
mality of applying the optimal policy of an abstract MDP
to its ground MDP, covering four types of state abstraction,
one of which closely parallels bisimulation. Even-Dar &
Mansour (2003) analyzed different distance metrics used in
identifying state space partitions subject to "-similarity. Or-
tner (2013) developed an algorithm for learning partitions
in an online setting by taking advantage of the confidence
bounds for T and R provided by UCRL (Auer et al., 2009).

3.2. Specific Abstraction Algorithms

Many previous works have targeted the creation of algo-
rithms that enable state abstraction for MDPs. Andre &
Russell (2002) investigated a method for state abstraction
in hierarchical reinforcement learning leveraging a pro-
gramming language called ALISP that promotes the notion
of safe state abstraction. Agents programmed using ALISP
can ignore irrelevant parts of the state, achieving abstrac-
tions that maintain optimality. Dietterich (2000) devel-
oped MAXQ, a framework for composing tasks into an ab-
stracted hierarchy where state aggregation can be applied.
Jong & Stone (2005) introduced a method called policy-
irrelevance in which agents identify (online) which state
variables may be safely abstracted away in a factored-state
MDP. For a more complete survey of algorithms that lever-
age state abstraction in past reinforcement-learning papers,
see Li et al. (2006).
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3.3. Exact Abstraction Framework

Li et al. (2006) developed a framework for exact state ab-
straction in MDPs. In particular, the authors defined five
types of state-aggregation functions, inspired by existing
methods for state aggregation in MDPs. We generalize two
of these five types, �

Q

⇤ and �model, to the approximate ab-
straction case. Our generalizations are equivalent to theirs
when exact criteria are used (i.e. " = 0). Additionally,
when exact criteria are used our bounds indicate that no
value is lost, which is one of core results of Li et al. (2006).

4. Abstraction Notation
We build upon the notation used by Li et al. (2006), who
introduced a unifying theoretical framework for state ab-
straction in MDPs.
Definition 1 (MG, MA): We understand an abstrac-
tion as a mapping from the state space of a ground MDP,
M

G

, to that of an abstract MDP, M

A

, using a state-
aggregation scheme. Consequently, this mapping induces
an abstract MDP. Let M

G

= hS
G

,A, T
G

,R
G

, �i and
M

A

= hS
A

,A, T
A

,R
A

, �i.
Definition 2 (SA, �): The states in the abstract MDP are
constructed by applying a state-aggregation function, �, to
the states in the ground MDP, S

A

. More specifically, �
maps a state in the ground MDP to a state in the abstract
MDP:

S
A

= {�(s) | s 2 S
G

}. (3)

Definition 3 (G): Given a �, each ground state has asso-
ciated with it the ground states with which it is aggregated.
Similarly, each abstract state has its constituent ground
states. We let G be the function that retrieves these states:

G(s) =

(
{g 2 S

G

| �(g) = �(s)}, if s 2 S
G

,

{g 2 S
G

| �(g) = s}, if s 2 S
A

.

(4)

The abstract reward function and abstract transition dynam-
ics for each abstract state are a weighted combination of the
rewards and transitions for each ground state in the abstract
state.
Definition 4 (!(s)): We refer to the weight associated
with a ground state, s 2 S

G

by !(s). The only restriction
placed on the weighting scheme is that it induces a prob-
ability distribution on the ground states of each abstract
state:

8s 2 S
G

0

@
X

s2G(s)

!(s)

1

A
= 1 AND !(s) 2 [0, 1].

(5)
Definition 5 (RA): The abstract reward function R

A

:

S
A

⇥A 7! [0, 1] is a weighted sum of the rewards of each

of the ground states that map to the same abstract state:

R
A

(s, a) =

X

g2G(s)

R
G

(g, a)!(g). (6)

Definition 6 (TA): The abstract transition function T
A

:

S
A

⇥A⇥ S
A

7! [0, 1] is a weighted sum of the transitions
of each of the ground states that map to the same abstract
state:

T
A

(s, a, s

0
) =

X

g2G(s)

X

g

02G(s0)

T
G

(g, a, g

0
)!(g). (7)

5. Approximate State Abstraction
Here, we introduce our formal analysis of approximate
state abstraction, including results bounding the error as-
sociated with these abstraction methods. In particular, we
demonstrate that abstractions based on approximate Q

⇤

similarity (5.1), approximate model similarity (5.2), and
approximate similarity between distributions over Q⇤, for
both Boltzmann (5.3) and multinomial (5.4) distributions
induce abstract MDPs for which the optimal policy has
bounded error in the ground MDP.

We first introduce some additional notation.

Definition 7 (⇡⇤
A, ⇡⇤

G): We let ⇡⇤
A

: S
A

! A and ⇡

⇤
G

:

S
G

! A stand for the optimal policies in the abstract and
ground MDPs, respectively.

We are interested in how the optimal policy in the abstract
MDP performs in the ground MDP. As such, we formally
define the policy in the ground MDP derived from optimal
behavior in the abstract MDP:

Definition 8 (⇡GA): Given a state s 2 S
G

and a state
aggregation function, �,

⇡

GA

(s) = ⇡

⇤
A

(�(s)). (8)

We now define types of abstraction based on functions of
state–action pairs.

Definition 9 ( e�f,"): Given a function f : S
G

⇥ A ! R
and a fixed non-negative " 2 R, we define e�

f,"

as a type
of approximate state-aggregation function that satisfies the
following for any two ground states s1 and s2:

e
�

f,"

(s1) =
e
�

f,"

(s2) ! 8
a

|f(s1, a)� f(s2, a)|  ". (9)

That is, when e�
f,"

aggregates states, all aggregated states
have values of f within " of each other for all actions.

Definition 10 (QG, VG): Let Q
G

= Q

⇡

⇤
G
: S

G

⇥A ! R
and V

G

= V

⇡

⇤
G

: S
G

! R denote the optimal Q and
optimal value functions in the ground MDP.
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Definition 11 (QA, VA): Let Q
A

= Q

⇡

⇤
A
: S

A

⇥A ! R
and V

A

= V

⇡

⇤
A

: S
A

! R stand for the optimal Q and
optimal value functions in the abstract MDP.

We now introduce our main result.
Theorem 1. There exist at least four types of approximate
state-aggregation functions, e�

Q

⇤
,"

, e�model,", e�bolt," and
e
�mult,", for which the optimal policy in the abstract MDP,
applied to the ground MDP, has suboptimality bounded
polynomially in ":

8
s2SGV

⇡

⇤
G

G

(s)� V

⇡GA
G

(s)  poly (") . (10)

We prove this theorem in the following sections by proving
polynomial bounds on the error of each individual approx-
imate state-aggregation function type.

5.1. Optimal Q Function: e�
Q

⇤
,"

We consider an approximate version of Li et al. (2006)’s
�

Q

⇤ . In our abstraction, states are aggregated together
when their optimal Q-values are within ".
Definition 12 ( e�Q⇤,"): An approximate Q function ab-
straction has the same form as Equation 9:
e
�

Q

⇤
,"

(s1) =
e
�

Q

⇤
,"

(s2) ! 8
a

|Q
G

(s1, a)�Q

G

(s2, a)|  ".

(11)
Lemma 1. When a e�

Q

⇤
,"

type abstraction is used to create
the abstract MDP:

8
s2SGV

⇡

⇤
G

G

(s)� V

⇡GA
G

(s)  2"

(1� �)

2
. (12)

Proof of Lemma 1: We first demonstrate that Q-values in
the abstract MDP are close to Q-values in the ground MDP
(Claim 1). We next leverage Claim 1 to demonstrate that
the optimal action in the abstract MDP is nearly optimal
in the ground MDP (Claim 2). Lastly, we use Claim 2 to
conclude Lemma 1 (Claim 3).
Claim 1. Optimal Q-values in the abstract MDP closely
resemble optimal Q-values in the ground MDP:

8
sG2SG,a

|Q
G

(s

G

, a)�Q

A

(

e
�

Q

⇤
,"

(s

G

), a)|  "

1� �

.

(13)

Consider a non-Markovian decision process of the same
form as an MDP, M

T

= hS
T

,A
G

,R
T

, T
T

, �i, parame-
terized by integer an T , such that for the first T time steps
the reward function, transition dynamics and state space are
those of the abstract MDP, M

A

, and after T time steps the
reward function, transition dynamics and state spaces are
those of M

G

. Thus,

S
T

=

(
S
G

if T = 0

S
A

o/w

R
T

(s, a) =

(
R

G

(s, a) if T = 0

R
A

(s, a) o/w

T
T

(s, a, s

0
) =

8
>><

>>:

T
G

(s, a, s

0
) if T = 0

P
g2G(s)

[T
G

(g, a, s

0
)!(g)] if T = 1

T
A

(s, a, s

0
) o/w

The Q-value of state s in S
T

for action a is:

Q

T

(s, a) =

8
>><

>>:

Q

G

(s, a) if T = 0

P
g2G(s)

[Q

G

(g, a)!(g)] if T = 1

R
A

(s, a) + �

T�1(s, a) o/w

(14)

where:

�

T�1(s, a) = �

X

sA
02SA

T
A

(s, a, s

A

0
)max

a

0
Q

T�1(sA
0
, a

0
).

We proceed by induction on T to show that:

8
T,sG2SG,a

|Q
T

(s

T

, a)�Q

G

(s

G

, a)| 
T�1X

t=0

"�

t

, (15)

where s

T

= s

G

if T = 0 and s

T

=

e
�

Q

⇤
,"

(s

G

) otherwise.

Base Case: T = 0

When T = 0, Q
T

= Q

G

, so this base case trivially follows.

Base Case: T = 1

By definition of Q
T

, we have that Q1 is

Q1(s, a) =

X

g2G(s)

[Q

G

(g, a)!(g)] .

Since all co-aggregated states have Q-values within " of
one another and !(g) induces a convex combination,

Q1(sT , a)  "�

t

+ "+Q

G

(s

G

, a).

) |Q1(sT , a)�Q

G

(s

G

, a)| 
1X

t=0

"�

t

. (16)

Inductive Case: T > 1

We assume as our inductive hypothesis that:

8
sG2SG,a

|Q
T�1(sT , a)�Q

G

(s

G

, a)| 
T�2X

t=0

"�

t

.

Consider a fixed but arbitrary state, s
G

2 S
G

, and fixed
but arbitrary action a. Since T > 1, s

T

is e�
Q

⇤
,"

(s

G

). By
definition of Q

T

(s

T

, a), R
A

, T
A

:

Q

T

(s

T

, a) =

X

g2G(sT )

!(g) ⇥

2

4R
G

(g, a) + �

X

g

02SG

T
G

(g, a, g

0
)max

a

0
Q

T�1(g
0
, a

0
)

3

5
.
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Applying our inductive hypothesis yields:

Q

T

(s

T

, a) 
X

g2G(sT )

!(g)⇥

R

G

(g, a) +

�

X

g

02SG

T

G

(g, a, g

0
)max

a

0
(Q

G

(g

0
, a

0
) +

T�2X

t=0

"�

t

)

�
.

Since all aggregated states have Q-values within " of one
another:

Q

T

(s

T

, a)  �

T�2X

t=0

"�

t

+ "+Q

G

(s

G

, a).

Since s

G

is arbitrary we conclude Equation 15. As T !
1,

P
T�1
t=0 "�

t ! "

1��

by the sum of infinite geometric
series and Q

T

! Q

A

. Thus, Equation 15 yields Claim 1.

Claim 2. Consider a fixed but arbitrary state, s
G

2 S
G

and its corresponding abstract state s

A

=

e
�

Q

⇤
,"

(s

G

). Let
a

⇤
G

stand for the optimal action in s

G

, and a

⇤
A

stand for the
optimal action in s

A

:

a

⇤
G

= argmax

a

Q

G

(s

G

, a), a

⇤
A

= argmax

a

Q

A

(s

A

, a).

The optimal action in the abstract MDP has a Q-value in
the ground MDP that is nearly optimal:

V

G

(s

G

)  Q

G

(s

G

, a

⇤
A

) +

2"

1� �

. (17)

By Claim 1,

V

G

(s

G

) = Q

G

(s

G

, a

⇤
G

)  Q

A

(s

A

, a

⇤
G

) +

"

1� �

. (18)

By the definition of a⇤
A

, we know that

Q

A

(s

A

, a

⇤
G

) +

"

1� �

 Q

A

(s

A

, a

⇤
A

) +

"

1� �

. (19)

Lastly, again by Claim 1, we know

Q

A

(s

A

, a

⇤
A

) +

"

1� �

 Q

G

(s

g

, a

⇤
A

) +

2"

1� �

. (20)

Therefore, Equation 17 follows.

Claim 3. Lemma 1 follows from Claim 2.

Consider the policy for M
G

of following the optimal ab-
stract policy ⇡

⇤
A

for t steps and then following the optimal
ground policy ⇡

⇤
G

in M

G

:

⇡

A,t

(s) =

(
⇡

⇤
G

(s) if t = 0

⇡

GA

(s) if t > 0

(21)

For t > 0, the value of this policy for s

G

2 S
G

in the
ground MDP is:

V

⇡A,t

G

(s

G

) =

R

G

(s,⇡

A,t

(s

G

))+ �

X

sG
02SG

T
G

(s

G

, a, s

G

0
)V

⇡A,t�1

G

(s

G

0
).

For t = 0, V ⇡A,t

G

(s

G

) is simply V

G

(s

G

).

We now show by induction on t that

8
t,sG2SgVG

(s

G

)  V

⇡A,t

G

(s

G

) +

tX

i=0

�

i

2"

1� �

. (22)

Base case: t = 0

By definition, when t = 0, V ⇡A,t

G

= V

G

, so our bound
trivially holds in this case.

Inductive case: t > 0

Consider a fixed but arbitrary state s

G

2 S
G

. We assume
for our inductive hypothesis that

V

G

(s

G

)  V

⇡A,t�1

G

(s

G

) +

t�1X

i=0

�

i

2"

1� �

. (23)

By definition,

V

⇡A,t

G

(s

G

) = R

G

(s,⇡

A,t

(s

G

))+

�

X

g

0

T
G

(s

G

, a, s

G

0
)V

⇡A,t�1

G

(s

G

0
).

Applying our inductive hypothesis yields:

V

⇡A,t

G

(s

G

) � R

G

(s

G

,⇡

A,t

(s

G

)) +

�

X

sG
0

T
G

(s

G

,⇡

A,t

(s

G

), s

G

0
)

 
V

G

(s

G

0
)�

t�1X

i=0

�

i

2"

1� �

!
.

Therefore,

V

⇡A,t

G

(s

G

) � ��

t�1X

i=0

�

i

2"

1� �

+Q

G

(s

G

,⇡

A,t

(s

G

)).

Applying Claim 2 yields:

V

⇡A,t

G

(s

G

) � ��

t�1X

i=0

�

i

2"

1� �

� 2"

1� �

+ V

G

(s

G

)

) V

G

(s

G

)  V

⇡A,t

G

(s

G

) +

tX

i=0

�

i

2"

1� �

.

Since s

G

was arbitrary, we conclude that our bound holds
for all states in S

G

for the inductive case. Thus, from our
base case and induction, we conclude that

8
t,sG2SgV

⇡

⇤
G

G

(s

G

)  V

⇡A,t

G

(s

G

) +

tX

i=0

�

i

2"

1� �

. (24)
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Note that as t ! 1,
P

t

i=0 �
i

2"
1��

! 2"
(1��)2 by the sum

of infinite geometric series and ⇡

A,t

(s) ! ⇡

GA

. Thus, we
conclude Lemma 1.

5.2. Model Similarity: e�
model,"

Now, consider an approximate version of Li et al. (2006)’s
�

model

, where states are aggregated together when their re-
wards and transitions are within ".

Definition 13 ( e�model,"): We let e�model," define a type of
abstraction that, for fixed ", satisfies:

e
�model,"(s1) = e

�model,"(s2) !
8
a

|R
G

(s1, a)�R
G

(s2, a)|  " AND

8
sA2SA

������

X

sG
02G(sA)

[T
G

(s1, a, sG
0
)� T

G

(s2, a, sG
0
)]

������
 ".

(25)

Lemma 2. When S
A

is created using a e�
model,"

type:

8
s2SGV

⇡

⇤
G

G

(s)� V

⇡GA
G

(s)  2"+ 2�((|S
G

|� 1)")

(1� �)

3
.

(26)

Proof of Lemma 2:

Let B be the maximum Q-value difference between any
pair of ground states in the same abstract state for e�model,":

B = max

sA,s1,s2,a
|Q

G

(s1, a)�Q

G

(s2, a)|,

where s

A

2 S
A

and s1, s2 2 G(s

A

). Since difference of
rewards is bounded by ":

B  "+ �

X

sA2SA

X

sG
02G(sA)


(T

G

(s1, a, sG
0
) �

T

G

(s2, a, sG
0
))max

a

0
Q

G

(s

G

0
, a

0
)

�
.

By similarity of transitions under e�model,":

B  "+ �QMAX
X

sA2SA

"  "+ �|S
G

|"QMAX.

Since QMAX =

RMAX
1��

, and we defined RMAX = 1:

B  "+ �(|S
G

|� 1)"

1� �

.

Since the Q-values of ground states grouped under e�model,"

are strictly less than B, we can understand e�model," as a type
of e�

Q

⇤
,B

. Applying Lemma 1 yields Lemma 2.

5.3. Boltzmann over Optimal Q: e�bolt,"

Here, we introduce e�bolt,", which aggregates states with
similar Boltzmann distributions on Q-values. This fam-
ily of abstractions is appealing as Boltzmman distribu-
tions balance exploration and exploitation (Sutton & Barto,
1998). We find this type particularly interesting for abstrac-
tion purposes as, unlike e�

Q

⇤
,"

, it allows for aggregation
when Q-value ratios are similar but their magnitudes are
different.

Definition 14 ( e�bolt,"): We let e�bolt," define a type of ab-
stractions that, for fixed ", satisfies:

e
�bolt,"(s1) = e

�bolt,"(s2) !

8
a

����
e

QG(s1,a)

P
b

e

QG(s1,b)
� e

QG(s2,a)

P
b

e

QG(s2,b)

����  ". (27)

We also assume that the difference in normalizing terms is
bounded by some non-negative constant, k 2 R, of ":

�����
X

b

e

QG(s1,b) �
X

b

e

QG(s2,b)

�����  k ⇥ ". (28)

Lemma 3. When S

A

is created using a function of the
e
�bolt," type, for some non-negative constant k 2 R:

8
s2SGV

⇡

⇤
G

G

(s)� V

⇡GA
G

(s) 
2"

⇣
|A|
1��

+ k"+ k

⌘

(1� �)

2
. (29)

We use the approximation for ex, with � error:

e

x

= 1 + x+ � ⇡ 1 + x. (30)

We let �1 denote the error in approximating e

QG(s1,a) and
�2 denote the error in approximating e

QG(s2,a).

Proof Sketch of Lemma 3:

By the approximation in Equation 30 and the assumption
in Equation 28:
�����
1 +Q

G

(s1, a) + �1P
j

e

QG(s1,aj)
� 1 +Q

G

(s2, a) + �2P
j

e

QG(s1,aj) ± k"

�����  " (31)

Either
P

j

e

QG(s1,aj) ± k" is
P

j

e

QG(s1,aj)
+ k", orP

j

e

QG(s1,aj) � k".

First suppose the former. It follows by algebra that:

� "  1 +Q

G

(s1, a) + �1P
j

e

QG(s1,aj)
� 1 +Q

G

(s2, a) + �2P
j

e

QG(s1,aj)
+ k"

 "

(32)
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� "

0

@
k"+

X

j

e

QG(s1,aj)

1

A� �1 + �2 

k"

 
1 +Q

G

(s1, a) + �1P
j

e

QG(s1,aj)

!
+Q

G

(s1, a)�Q

G

(s2, a) 

"

0

@
k"+

X

j

e

QG(s1,aj)

1

A� �1 + �2

A similar equation follows if we suppose the latter and
combining these equations gives us:

|Q
G

(s1, a)�Q

G

(s2, a)|  "

✓
|A|
1� �

+ k"+ k

◆
. (33)

Consequently, we can consider e�bolt," as a special case of
the e�

Q

⇤
,B

type, where B = "

⇣
|A|
1��

+ k"+ k

⌘
. Lemma 3

then follows from Lemma 1.

5.4. Multinomial over Optimal Q: e�mult,"

We consider approximate abstractions derived from a
multinomial distribution over Q⇤ for similar reasons to the
Boltzmann distribution. Additionally, the multinomial dis-
tribution is appealing for its simplicity.

Definition 15 ( e�mult,"): We let e�mult," define a type of ab-
straction that, for fixed ", satisfies

e
�mult,"(s1) = e

�mult,"(s2) !

8
a

����
Q

G

(s1, a)P
b

Q

G

(s1, b)
� Q

G

(s1, a)P
b

Q

G

(s1, b)

����  ". (34)

We also assume that the difference in normalizing terms is
bounded by some non-negative constant, k 2 R, of ":

������

X

i

Q

G

(s1, ai)�
X

j

Q

G

(s2, aj)

������
 k ⇥ ". (35)

Lemma 4. When S

A

is created using a function of the
e
�mult," type, for some non-negative constant k 2 R:

8
s2SMV

⇡

⇤
G

G

(s)� V

⇡GA
G

(s) 
2"|A|
1��

+ k"

2
+ k

(1� �)

2
. (36)

Proof Sketch of Lemma 4 The proof follows an identical
strategy to that of Lemma 3, but without ex ⇡ 1 + x.

6. Example Domains
We apply approximate abstraction to four example
domains—NChain, Taxi, Minefield and Random. These
domains were selected for their diversity—NChain is rela-
tively simple, Taxi is goal-based and hierarchical in nature,

Minefield is stochastic, and Random MDP has many near-
optimal policies.

Our code base1 provides implementations for abstracting
arbitrary MDPs as well as visualizing and evaluating the
resulting abstract MDPs. We use the graph-visualization
library GraphStream (Pigné et al., 2008) and the planning
and RL library, BURLAP2. For all experiments, we set � to
0.95.

NChain is a simple MDP investigated in the Bayesian
RL literature due to the interesting exploration problem it
poses (Dearden et al., 1998). In our implementation, we set
N = 10, normalized rewards between 0 and 1, and used a
slip probability of 0.2.

Taxi has long been studied by the hierarchical RL liter-
ature (Dietterich, 2000). The agent, operating in a Grid
World style domain (Russell & Norvig, 1995), may move
left, right, up, and down, as well as pick up a passenger and
drop off a passenger. The goal is achieved when the agent
has taken all passengers to their destinations.

Minefield is a test problem we are introducing that uses the
Grid World dynamics of Russell & Norvig (1995) with slip
probability of x. The reward function is such that moving
up in the top row of the grid receives 1.0 reward; all other
transitions receive 0.2 reward, except for transitions to a
random set of  states (which may include the top row)
that receive 0 reward. (These are the states with “mines” in
them.) We set N = 10,M = 4, " = 0.5, = 5, x = 0.01.
In the Random MDP domain we consider, there are 100

states and 3 actions. For each state, each action transitions
to one of two randomly selected states with probability 0.5.

7. Empirical Results

We ran experiments on the e�
Q

⇤
,"

type aggregation func-
tions. We provide results for only e�

Q

⇤
,"

because, as our
proofs in Section 5 demonstrate, the other three functions
are reducible to particular e�

Q

⇤
,"

functions. For the pur-
pose of illustrating what kinds of approximations are pos-
sible we built each abstraction by first solving the MDP,
then greedily aggregating ground states into abstract states
that satisfied the e�

Q

⇤
,"

criteria. Since this approach rep-
resents an order-dependent approximation to the maximum
amount of abstraction possible, we randomized the order in
which states were considered across trials. Every ground
state is equally weighted in its abstract state.

For each domain, we report two quantities as a function of
epsilon with 95% confidence bars. First, we compare the
number of states in the abstract MDP for different values

1
github.com/david-abel/state_abstraction

2
http://burlap.cs.brown.edu/

github.com/david-abel/state_abstraction
http://burlap.cs.brown.edu/
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Figure 1. " vs. Num States and " vs. Abstract Policy Value

of ", shown in the top row of Figure 1. The smaller the
number of abstract states, the smaller the state space of the
MDP that the agent must plan over. Second, we report the
value under the abstract policy of the initial ground state,
also shown in the bottom row of Figure 1. In the Taxi and
Random domains, 200 trials were run for each data point,
whereas 20 trials were sufficient in Minefield and NChain.

Our empirical results corroborate our thesis—approximate
state abstractions can decrease state space size while re-
taining bounded error. In both NChain and Minefield, we
observe that, as " increases from 0, the number of states
that must be planned over is reduced, and optimal behavior
is either fully maintained (NChain) or very nearly main-
tained (Minefield). Similarly for Taxi, when " is between
.02 and .025, we observe a reduction in the number of states
in the abstract MDP while value is fully maintained. After
.025, increased reduction in state space size comes at a cost
of value. Lastly, as " is increased in the Random domain,
there is a smooth reduction in the number of abstract states
with a corresponding cost in the value of the derived pol-
icy. When " = 0, there is no reduction in state space size
whatsoever (the ground MDP has 100 states), because no
two states have identical optimal Q-values.

Our experimental results also highlight a noteworthy char-
acteristic of approximate state abstraction in goal-based
MDPs. Taxi exhibits relative stability in state space size
and behavior for " up to .02, at which point both fall off
dramatically. We attribute the sudden fall off of these quan-
tities to the goal-based nature of the domain; once infor-
mation critical for achieving optimal behavior is lost in
the state aggregation, solving the goal—and so acquiring
any reward—is impossible. Conversely, in the Random do-

main, a great deal of near optimal policies are available to
the agent. Thus, even as the information for optimal behav-
ior is lost, there are many near optimal policies available to
the agent that remain available.

8. Conclusion
Approximate abstraction in MDPs offers considerable ad-
vantages over exact abstraction. In this work, we proved
bounds for the value lost when behaving according to the
optimal policy of the abstract MDP. We also empirically
demonstrate that approximate abstractions can reduce state
space size with minor loss in the quality of the behavior.

There are many directions for future work. First, we are
interested in extending the approach of Ortner (2013) by
learning the approximate abstraction functions introduced
in this paper online in the planning or RL setting. While
our work presents several sufficient conditions for achiev-
ing bounded error of learned behavior with approximate
abstractions, we hope to investigate what conditions are
strictly necessary for an approximate abstraction to achieve
bounded error. In the future, we are interested in character-
izing the relationship between temporal abstractions, such
as options (Sutton et al., 1999), and approximate abstrac-
tions. Lastly, we are interested in understanding the rela-
tionship between various approximate abstractions and the
information theoretical limitations on the degree of abstrac-
tion achievable in MDPs.
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