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Abstract
We consider the problem of how best to use prior
experience to bootstrap lifelong learning, where
an agent faces a series of task instances drawn
from some task distribution. First, we identify the
initial policy that optimizes expected performance
over the distribution of tasks for increasingly com-
plex classes of policy and task distributions. We
empirically demonstrate the relative performance
of each policy class’ optimal element in a vari-
ety of simple task distributions. We then con-
sider value-function initialization methods that
preserve PAC guarantees while simultaneously
minimizing the learning required in two learn-
ing algorithms, yielding MAXQINIT, a practical
new method for value-function-based transfer. We
show that MAXQINIT performs well in simple
lifelong RL experiments.

1. Introduction
The lifelong reinforcement learning (RL) setting formalizes
the problem of building agents that must solve a series of
related tasks drawn from a task distribution, rather than a
single, isolated task. The key question in lifelong RL is the
question of transfer: how can algorithms exploit knowledge
gained by solving previous tasks to improve performance in
the next task?

The space of methods for transfer in RL is vast. Prior work
has investigated methods for accelerating learning in new en-
vironments given partial solutions to related environments,
including approaches that incorporate action priors to in-
centivize guided exploration (Sherstov & Stone, 2005; Ros-
man & Ramamoorthy, 2012; Abel et al., 2015) and make
use of succinct representations that enable efficient infer-
ence (Walsh et al., 2006), while others reuse elements of
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computed policies from related tasks (Fernández & Veloso,
2006; Taylor & Stone, 2007a; Singh, 1992). While a great
deal of research has been conducted on understanding effec-
tive transfer, the field still lacks a fundamental understanding
of what the optimal in-principle approach is in this setting.

We consider the question of how best to initialize an agent’s
policy or value function for task n, given the optimal poli-
cies and value functions obtained by solving tasks 1 through
n− 1. We restrict our attention to two kinds of knowledge:
policies and values. We begin with policies, progressing
from the simplest setting of constructing the deterministic
policy that performs best in expectation for task n, to the
stochastic and belief-space policy cases, the latter of which
models learning. In the first two cases, we derive the optimal
way to initialize the policy for two classes of task distribu-
tions. We then turn to value-function initialization, focusing
on methods that preserve PAC-MDP guarantees but mini-
mize required learning in R-Max (Brafman & Tennenholtz,
2002) and Delayed Q-Learning (Strehl et al., 2006), both of
which preserve PAC bounds via optimistic value-function
initialization.

We evaluate each algorithm empirically in a collection
of simple lifelong RL tasks. Our empirical and theoreti-
cal results show that a practical and simple new method,
MAXQINIT, can lower the sample complexity of lifelong
learning via value-function-based transfer.

2. Background
Reinforcement learning models an agent interacting with an
environment to maximize long term expected reward (Sutton
& Barto, 1998). The environment is typically modeled as
a Markov Decision Process (MDP) (Puterman, 2014). An
MDP is a five tuple: 〈S,A,R, T , γ〉, where S is a finite
set of states; A is a finite set of actions; R : S × A 7→
[0,RMAX] is a reward function, with a lower and upper
bound 0 and RMAX; T : S × A 7→ Pr(S) is a transition
function, denoting the probability of arriving in state s ∈ S
after executing action a ∈ A in state S; and γ ∈ [0, 1)
is a discount factor, expressing the agent’s preference for
immediate over delayed rewards.

The agent’s action selection strategy is modeled by a policy,
π : S× 7→ Pr(A), mapping states to rewards. Its goal is to
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Π R ∼ D G ∼ D
Πd : S 7→ A Avg. MDP (Ramachandran & Amir, 2007) (Singh et al., 1994)
Πs : S 7→ Pr(A) Avg. MDP (Singh et al., 1994)
Πb : S × Pr(M) 7→ A Belief MDP (Åström, 1965) Belief MDP

Figure 1: A summary of optimality across learning settings and policy classes.

select actions that maximize long term expected reward. A
policy is evaluated using Bellman Equation, giving the long
term expected reward received by executing that policy:

V π(s) = R(s, π(s)) + γ
∑
s′∈S
T (s, π(s), s′)V π(s′). (1)

The above measure is known as a value function. Also
of interest is the action–value function, which denotes the
value of taking action a and thereafter following policy π:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
T (s, a, s′)V π(s′). (2)

We denote π∗ = arg maxπ V
π , V ∗ = maxπ V

π , andQ∗ =
maxπ Q

π as the optimal policy, value function, and action-
value function respectively. Lastly, we suppose RMAX is
a known upper bound on the range of the reward function,
and let VMAX = RMAX

1−γ denote a theoretical upper bound
on the maximum possible value achievable in any MDP.

2.1. Lifelong Reinforcement Learning

The goal of our work is to clarify what exactly should be
transferred—either as an initial policy, or an initial value
function—to maximize performance in lifelong RL. In life-
long RL, an agent solves a series of tasks, rather than a
single MDP, and should use its prior experience solving
earlier tasks to improve performance in later tasks. We here
adopt the lifelong learning framework used by Brunskill &
Li (2015; 2014); Isele et al. (2016) and Wilson et al. (2007),
inspired by the early work by Thrun & Schwartz (1993):

Definition 1 (Lifelong RL): Let M̃ = S,A be two
fixed sets representing a state and action space, respec-
tively. Let D denote a fixed but unknown distribution
over (R, T , H, ρ0) quadruples, where R is a reward
function, T is a transition function, H is a horizon,
and ρ0 is an initial state probability distribution.

The lifelong reinforcement learning problem consists
of the repetition of the following two steps:

1. The agent samples a task (R, T , H, ρ0) ∼ D.

2. The agent interacts with the MDP defined by M̃ ∪
(R, T , H, ρ0) for H steps.

The key question in lifelong RL is what knowledge the agent
should capture from the tasks it has already solved to import
into the task it must solve next. Naturally, lifelong RL is
intimately connected to several other problem settings, such
as multitask RL and transfer in RL. For further exposition
of these settings, see Taylor et al. (2009) and Brunskill &
Li (2015). We restrict our attention to subclasses of MDP
distributions by making structural assumptions about which
MDP constituents may change throughout elements of the
support of the task distribution. These subclasses aim to
capture distinct types of environments typically studied in
the RL literature. Naturally, understanding the setting in its
full generality is a direction for future work.

1. R ∼ D. In the simplest case, we suppose that only the
reward function changes over the distribution: T and
ρ0 do not vary. This variant captures worlds in which
tasks or preferences change, but the environment’s
dynamics remain fixed.

2. G ∼ D. Perhaps the most common RL tasks are
those in which the reward function is goal based. That
is, every reward in the support of the environmental
distribution can be represented as:

Rp(s, a) =

{
1 p(s, a)

0 ¬p(s, a),
(3)

for some predicate on state-action pairs, p. Further,
states that satisfy goal predicate p(s, a) are terminal:
the agent transitions to an absorbing state wherein all
actions lead to self-loops forever after.

Note that due to the terminal nature of goals, a change
in goal across tasks in the distribution actually changes
the transition dynamics across tasks; the assignment of a
particular predicate p dictates which states have transitions
to an absorbing state. Since the absorbing states change, the
G ∼ D setting is not a subclass of theR ∼ D setting.

These two settings are simplifications of the full lifelong
RL problem, but they offer a general vantage from which to
study the nature of optimal transfer in lifelong RL.

Lastly, we define the jumpstart as “The initial performance
of an agent in a target task [as] improved by transfer from a
source task” (Taylor et al., 2007).
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2.2. Related Work

The space of prior work on transfer for RL is broad, en-
compassing methods for exporting representations, skills
or partial policies, and forms of knowledge that bias action
selection. We here provide a brief survey of this literature
focused on literature dealing with transferring policies, ac-
tions priors, and shaping. We do not cover the full details
of representation transfer (Walsh et al., 2006; Abel et al.,
2017; Taylor & Stone, 2007b) and skill transfer (Konidaris
& Barto, 2007; Topin et al., 2015; Pickett & Barto, 2002),
but note that these are active and relevant areas of research.

2.2.1. POLICY TRANSFER

Most directly relevant to our agenda are those methods that
extract pieces of policies to be used in future tasks. Many
of these papers study an agent in a lifelong transfer setting
closely aligned with our own. For instance, Fernández &
Veloso (2006) developed Policy Reuse, a method for saving
chunks of policies for transfer to other related tasks. They
inject the effects of prior policies through several strategies,
including an ε-greedy-like action selection that uses a prior
policy ε of the time. Similarly, Singh (1992) introduces one
of the earliest forms of algorithms designed for solving a
sequence of related RL tasks. We build on this work by
focusing on simple theory that addresses the open question:
what should we be transferring in lifelong RL?

2.2.2. ACTION PRIORS AND SHAPING

A key part of the transfer learning literature focuses on meth-
ods for biasing an agent’s initial action selection strategy,
either through a shaping function or action prior.

Sherstov & Stone (2005) introduced one of the earliest in-
stances of action priors in the form of action pruning. They
employ action pruning at the task level, focusing on large
action-space environments where the reduction in the di-
mensionality of the action space is dramatic. Along the
same lines, Rosman & Ramamoorthy (2012) introduced a
method for action-prior transfer in RL that can be incorpo-
rated into learning to bias exploration. Abel et al. (2015)
propose goal-based action priors–computed given access to
a training task distribution–which dynamically prune away
actions on a complex target task, thereby narrowing the
search for a good policy conditioned on a descriptor of the
goal and the current state.

Shaping in various forms has long been studied as a mech-
anism for providing agents with heuristics to accelerate
learning, such as the optimal-policy-preserving potential-
based shaping (Ng et al., 1999). Mann & Choe (2013)
perform transfer between tasks using the assumption that
state-action values (in a source and target task) are corre-
lated. They prove that their introduced method of transfer-

ring value, based on a task-to-task mapping, cannot hurt the
sample complexity of learning, and show that often sam-
ple complexity is reduced using the transferred knowledge.
The main difference between our work is that they focus
on positive transfer to a single test task in contrast to our
lifelong setting, and suppose access to a inter-task map-
ping. Konidaris & Barto (2006) consider an agent facing
a sequence of goal-based tasks guaranteed to share some
inherent structure, such as containing the same objects or
offering the same transition dynamics. In this sense, the
problems they consider parallel ourR ∼ D and G ∼ D set-
tings. They propose learning a shaping function to expedite
learning on future tasks. There is a natural parallel to the
shaping methods we introduce in Section 3; however, their
approach assumes the existence of a separate, agent-centric
space in which the shaping function is learned, while we
make no such assumption.

Brys et al. (2015) further investigated potential shaping,
demonstrating that an arbitrary policy can be transferred
by injecting the policy into a reward-shaping function. Our
method parallels theirs in the sense that our dynamic shap-
ing method injects the jumpstart policies summarized by
Table 1 into initializations. By the main result (Wiewiora,
2003), under restricted conditions, potential shaping and
Q-function initialization are equivalent. Other extensions in-
clude potential-based shaping for model-based RL (Asmuth
et al., 2008), arbitrary translation of reward-function-to-
potential (Harutyunyan et al., 2015) and dynamic potential
shaping (Devlin & Kudenko, 2012).

3. Theoretical Results
We now aim to partially explain the nature of effective trans-
fer in the two introduced restricted lifelong RL settings.
Toward this goal, we first study jumpstart policies for life-
long RL through the following question: which single policy
maximizes expected value with respect to the distribution
of tasks? That is, if a learner had to start off in a new task
drawn from the distribution—and wasn’t allowed to change
after seeing the task—which policy should it choose? All
proofs are deferred to the appendix.

Formally, we’d like to solve the jumpstart objective:

arg max
π∈Π

EM∼D [V πM (s0)] , (4)

for MDP distribution D and choice of policy class Π. In
each of the next two sections we provide two kinds of results
for both task distributions:

1. Jumpstart Policy: The optimal policy from Πd and
Πs for the given task distribution.

2. Value Loss: A lower bound on the value achieved
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by running the jumpstart policy identified by the first
result.

3.1.R ∼ D

The optimal policy for the jumpstart objective from Πd is
given by Ramachandran & Amir (2007):

Theorem 3.1 (Ramachandran & Amir (2007)). Given
a distribution Pr(R) of reward functions for an MDP
(S,A, T ,R, γ), let an average MDP be an MDP Mavg =
(S,A, T ,Ravg, γ) where Ravg(s, a) = ER∼D[R(s, a)].
The optimal fixed policy for an average MDP maximizes
EM∼D [V πM (s0)].

We refer to the optimal policy for the average MDP as
the average MDP policy, denoted π∗avg. Since there exists
a deterministic optimal policy for any MDP (Ross, 1983),
there exists a deterministic policy that is optimal among a set
of stochastic policies: π = arg maxπ∈Πs

EM∼D [V πM (s0)].
Thus the average MDP policy is the optimal jumpstart policy
according to Equation 4 for both Πd and Πs.

Our next result establishes a tight lower bound on the value
that π∗avg achieves.

Theorem 3.2. For a distribution of MDPs with R ∼ D,

EM∈M[V
π∗avg

M (s)] ≥ max
M∈M

Pr(M)V ∗M (s). (5)

Intuitively, running π∗avg is at least as effective as just using
the optimal policy of the single MDP with maximal expected
value in the distribution. In the Appendix we prove that the
above bound is in fact tight. We now discuss the same pair
of results for the goal-based-task distribution.

3.2. G ∼ D

As withR ∼ D, we first prove which policy from each class
maximizes the jumpstart objective. With a slight modifica-
tion to notation, we can leverage a classic result from Singh
et al. (1994):

Theorem 3.3 (Singh et al. (1994)). Given a distribution of
reward and transition functions for an MDP (S,A, T ,R, γ),
the policy that maximizes the expected total reward is a
policy that maximizes:∑

s∈S
Pr(s | π)

∑
M∈M

Pr(M | s, π)V πM (s). (6)

Intuitively, the policy which maximizes the average value
function, given updates over the policy’s state visitation,
maximizes performance in the G ∼ D setting. We next pro-
vide a lower bound on the value of this policy that parallels
Theorem 3.2.

Corollary 3.4. Given a distribution of reward and
transition functions for an MDP (S,A, T ,R, γ),
let Mgavg be an MDP (S,A, Tavg,Ravg, γ) where
Ravg(s, a) = EM∈M[RM (s, a)] and Tavg(s, a, s′) =
EM∈M[TM (s, a, s′)]. An optimal policy π∗gavg for Mgavg

is a policy with a lower bound in G ∼ D setting:

EM∈M[V
π∗gavg

M (s)] ≥
min
M∈M

Pr(M) max
M ′∈M

Pr(M ′)V ∗M ′(s). (7)

Note that this bound is actually quite easy to achieve: we
can simply solve an arbitrary MDP in the distribution to
yield a policy with at least this much value. We suspect that
the bound is quite loose and plan to tighten it in future work.

We close this section by noting that in both classes of
task distribution, the belief-space policy class, Πb : S ×
Pr(M) 7→ A captures optimal behavior that includes the
additional value of in-task learning (Åström, 1965). Of
course, solving the belief space problem is computationally
intractable, but it does offer an informative upper bound on
performance. To this end, we illustrate the performance of
the optimal belief-space policy in our experiments.

3.3. Learning

So far, our results have focused on fixed policies that opti-
mize the jumpstart objective. However, the more general
question is alluring: Given the choice, what knowledge
should be reused across MDPs drawn from the same distri-
bution, supposing that an arbitrary learning agent is given
this prior knowledge? The results from the previous sec-
tion suggest that the structure of optimal behavior indeed
changes as the constraints placed on the environment or
policy class change.

When agents learn, however, reusing the jumpstart policies
exactly is untenable. Contrary to fixed policies, learning
agents must explore their environment to ensure the data
they collect is informative, while maximizing current perfor-
mance. The requirement to explore fundamentally changes
the measure of a good jumpstart policy. Using the surveyed
jumpstart policies exactly will lead to poor performance as
they do not necessarily cooperate with exploration strategies.
Hence, instead of just evaluating according to the jumpstart
objective in Equation 4, we now take into account an agent’s
propensity to explore.

Specifically, we study classes of value- and reward-function
initialization methods for model-free and model-based learn-
ing that preserve desirable exploration. Intuitively, these
methods parallel potential shaping techniques, and under
restricted assumptions are identical (Wiewiora, 2003). We
show that a particular type of policy prior, implemented
through value-function initialization (of value or reward
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estimates, depending on the algorithm used), can lead to
a reduction in the sample complexity of learning. More
formally, we study which types of initialization functions
have two critical properties: (1) preserve the PAC-MDP
guarantee of an algorithm, and (2) accelerate learning. At
first glance, none of the jumpstart policies satisfy property
(1), as they all fail to satisfy the optimism property that is
critical to many PAC-MDP algorithms.

We first recall the classic result, first introduced by Brafman
& Tennenholtz (2002) and later generalized into the PAC-
MDP framework (Strehl et al., 2009), based on the sample-
complexity of exploration (Kakade, 2003):

Theorem 3.5 (Brafman & Tennenholtz (2002)). The algo-
rithm R-Max is PAC-MDP in parameters (ε, δ). That is,
given an ε ∈ [0,VMAX] and a δ ∈ (0, 1.0], the algorithm
will make at most

Õ

(
C · S

ε3(1− γ)3
VMAX3

)
(8)

mistakes ignoring logarithmic terms, where

C = |{(s, a) ∈ S ×A : U(s, a) ≥ V ∗(s)− ε}|, (9)

and U(s, a) is an upper bound of Q∗(s, a).

That is, R-Max will only make a polynomial number of mis-
takes with high probability. Critically, the number of mis-
takes depends on the initialization of U . Likewise, Delayed-
Q-Learning (henceforth Delayed-Q) is a model-free algo-
rithm with the same property (Strehl et al., 2006).

Theorem 3.6 (Strehl et al. (2006)). Delayed-Q is PAC-
MDP in parameters (ε, δ). That is, given an ε ∈ [0,VMAX]
and a δ ∈ (0, 1.0], the algorithm will make at most:

Õ

(
D · VMAX(1 + γVMAX)2

ε4(1− γ)4

)
(10)

mistakes ignoring logarithmic terms, where

D =
∑

(s,a)∈S×A

[U(s, a)− V ∗(s)]+, (11)

[x] is defined as max(0, x), and U(s, a) is an upper bound
of Q∗(s, a).

These two algorithms will serve as exemplar PAC-MDP
model-based and model-free algorithms respectively. The
polynomial bounds indicate that these algorithms explore
their environments efficiently. Our original transfer objec-
tive now becomes: initialize U(s, a) so as to reduce the size
of C or D but still preserve the PAC-MDP property.

Our next result summarizes a new method, MAXQINIT, that
balances this tradeoff. In particular, we inject prior knowl-
edge, such as the knowledge captured by a jumpstart policy,

as an initial value function U(s, a) for both algorithms. A
setting of this function can bias or accelerate learning, prune
actions, and enforce partial policies on a state-action basis,
while simultaneously lowering sample complexity, insofar
as C and D are reduced in size. A stronger result might be
obtained by combining these updates with a computationally
efficient incremental planner, as in Strehl et al. (2012).

We first consider an optimal but highly unrealistic form of
initializing U . Let Qmax be a function on state-action pairs
that takes the maximum value of Q∗ across MDPs in the
distribution:

Qmax(s, a) = max
M∈M

Q∗M (s, a). (12)

By definition, Qmax is the tightest upper bound of Q∗M over
MDPs the distribution. Thus, U = Qmax minimizes both C
and D, and so would serve as an appropriate value.

Qmax is unattainable as it requires prior knowledge about
every MDP in the distribution. We propose a more realistic
approach called MAXQINIT, a Q-function transfer algo-
rithm that estimates Qmax empirically:

Q̂max(s, a) = max
M∈M̂

QM (s, a), (13)

where M̂ is the set of MDPs the agent has sampled so far,
and QM is a Q-function the agent learned from interacting
with each MDP. Algorithm 1 provides pseudocode for the
updating optimism procedure.

Algorithm 1 MAXQINIT

INPUT: s0, t,H,D,A , p̂min, Q̂max

OUTPUT: U(s, a)

if t > ln(δ)
ln(1−p̂min) then

∀s,a : Qt(s, a)← Q̂max

else
∀s,a : Qt(s, a)← VMAX

end if
M ← sample(D)
QA ,M ← A (M, s0, H)
∀s,a : Qt(s, a)← QA ,M (s, a)

∀s,a : Qmax ← max
{
Q̂max(s, a), Qt(s, a)

}
return Q̂max

We next offer a lower sample bound on MDPs required for
preserving the optimism property with high probability.

Theorem 3.7. Suppose A (M, s0, H) produces ε-accurate
Q functions for a subset of the state action space given an
MDP M , an initial state s0, and a horizon H . For a given
δ ∈ (0, 1]. Then, after t ≥ ln(δ)

ln(1−pmin) sampled MDPs, for
pmin = minM∈M Pr(M), the MAXQINIT initialization
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will return Q̂max such that for all state action pairs (s, a):

Q̂max(s, a) ≥ max
M

Q∗M (s, a), (14)

with probability 1− δ.

Consequently, with high probability, updating U(s, a) using
the above strategy preserves the optimism property required
by the PAC-MDP algorithms. Further, the size of C and
D is reduced, as those state–action pairs (s, a) for which
Q̂max(s, a) are below the mistake bound are removed from
the algorithm’s sample complexity. Our sample bound re-
quires p̂min, a parameter indicating the lowest probability
MDP in the distribution (or an approximation thereof).

In summary, our results serve two purposes. First, we il-
lustrate which individual policies maximize the jumpstart
objective to address the simplest version of the question:
how should agents begin their learning for task n + 1, if
they’ve solved some number of tasks 1, . . . , n? We accom-
pany these results with lower bounds on the performance of
these policies to illustrate their utility. Second, we use the
intuition developed by our jumpstart policies to identify a
practical transfer method well suited to lifelong learning.

4. Experiments
Our experiments evaluate both the jumpstart policies and
initialization methods. Our code is freely available for re-
producibility and extension.1

4.1. Jumpstart Policies

First, we evaluate jumpstart policies. The goal of these
experiments is to showcase the relative performance of dif-
ferent jumpstarts in different lifelong learning settings. In
each environment, we compare four policies:

• πavg (•): The optimal policy in the average MDP.

• πprior (�): The action-prior policy, which
stochastically chooses actions according to the
probability distribution over action optimality:
πprior(a | s) = PrM∼D

(
a = arg maxaQ

∗
M (s, a)

∣∣∣ s)
• πu (�): The uniform random policy.

• π∗b (N): The optimal belief-space policy—the policy
that maximizes value over the Belief MDP (Åström,
1965) defined by the MDP distribution.

For each policy, in each experiment, we sample a reward
function, run the policy in the resulting MDP for 100 steps

1https://github.com/david-abel/transfer_
rl_icml_2018.

and repeat. All plots show average performance over the
task distribution, an empirical estimate of our jumpstart
objective. We provide 95% confidence intervals over the
joint distribution-sampling and policy-execution process
(which leads to relatively large intervals in many cases due
to the inherent entropy of the task distribution). We set
γ = 0.95 for all experiments.

For R ∼ D, we use a use-typical 11×11 grid world task
distribution with each reward function specifying four to
eight lava states placed throughout the grid. Entering a state
with lava provides a reward of 0, with all other rewards set to
0.001, apart from states that satisfy the goal predicate, which
yields 1.0. The goal location is terminal and fixed across
tasks to the top right cell, while the start state is fixed to the
bottom left cell. Lastly, there is a 0.1 slip probability, in
which the agent moves in one of the two directions (chosen
uniformly) perpendicular to its chosen action.

For G ∼ D, we experiment with two grid-world distribu-
tions. In the first, “Octogrid”, the agent starts in the center
of a 13×13 grid world (see Figure 2 of the Appendix for an
image of the problem). The agent is surrounded by twelve
hallways, three in each cardinal direction. A single goal
appears at the end of one hallway in each G sampled from
the distribution, chosen uniformly at random over hallways.
All rewards are set to 0 apart from the transition into the goal
state, which yields 1.0. The second task is Four Rooms, the
classic 11× 11 grid-world variant from Sutton et al. (1999).
The goal distribution is uniform over each of the furthest
corners and the center of the non-starting rooms (for a total
of six goals), with the agent starting in the bottom left room.
For both of these tasks, there is no slip probability.

Results for the jumpstart experiments are presented in Fig-
ure 2. Across all plots, the belief-space policy and the
uniform random policy serve as upper and lower bounds on
performance. In Lava World, the optimal policy in the aver-
age MDP performs better than the uniform random policy,
as expected. The average MDP policy performs better than
the action-prior policy in Lava World. In both experiments,
the average MDP policy has almost no increase after the
first 20 steps, but it still performs better than the action-prior
policy.

In Octogrid, both the average MDP and the action-prior
MDP are worse than the uniform random policy after 60
steps. In the task, the goals are spread out (see Appendix).
The average MDP policy is deterministic, so the policy will
go to one of the goals, yielding an expected (undiscounted)
value of 1/N , where N is the number of goals/arms. The
action prior policy yields even worse behavior: when the
agent is down one of the arms on route to the goal, the action
prior policy moves away from the goal (toward all other
the goals) with probability (N − 1)/N . Therefore, for a
sufficiently long arm, and a high enough N , the action prior
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Figure 2: Results of jumpstart experiments inR ∼ D (top) and G ∼ D (bottom) task distributions. Plots show cumulative
reward averaged over 500 (Lava and Octo) and 300 (Four Room) MDP samples from D.

policy will reach a goal with exponentially low probability.
By contrast, the uniform random policy will reach a goal
according to the random walk.

Note the surprising advantage of π∗avg compared to πprior.
While relatively negligible over a longer horizon, recall that
even a moderate advantage here is indicative of the boost a
learning agent receives from its first round of experiences.
In domains with sparse and delayed reward, improvement
of this kind can lead to dramatic decreases in learning time.
Of course, the upper bound provided by the belief policy
π∗b showcases how much room a learning agent has to grow
after its initial experiences. Even still, early on, π∗avg tracks
closely with π∗b , particularly in the Octogrid.

4.2. Learning

In our second set of experiments, we evaluate methods for
value initialization in lifelong RL. We compare Q-learning,
R-Max, and Delayed-Q. For Q-Learning, we used ε-greedy
action selection with ε = 0.1, and set learning rate α =
0.1. For R-Max, we set the knownness threshold to 10, the
number of experiences m of a state-action pair before an
update to be allowed to 5, the number of value iterations to 5,
and for Delayed-Q we set m = 5 and a constant exploration
bonus ε1 = 0.1. In all experiments, the agent samples a
goal uniformly at random, interacts with the resulting MDP
for 100 episodes with 100 of steps per episode.

We evaluate each algorithms with four initializations of Q:

1. VMAX: Q is initialized as the maximum of V .

2. UO(M, Q∗): Q is initialized to be the maximum of
optimal Q that could be achieved among all the MDPs.

3. UO(M̂, Q∗): Q is initialized to be the maximum of
optimal Q that could be achieved among the MDPs in
the empirical distribution.

4. MAXQINIT: Q is initialized to be the maximum of
estimated Q that could be achieved among the MDPs
in the empirical distribution.

UO(M, Q∗) and UO(M̂, Q∗) are (impractical) idealiza-
tions of MAXQINIT where an agent knows the Q∗ of every
MDP in the true or empirical distribution.

For Q-learning, we also evaluate Q∗avg, where Q is ini-
tialized as the average Q∗ value over the true distribution
(average MDP), and where Q is initialized with 0. We ex-
cluded UO(M̂, Q∗) for Q-learning as Q-learning agents
tend to learn a Q-value close enough to Q∗ within a given
number of episodes.

We experiment with each approach on two extremely simple
11×11 gridworld task distributions. In the first (“Tight”)
the seven possible goals appear in the upper rightmost cells
in the square, while in the second (”Spread”), the seven
goals can appear near each of the three non-starting corners.
Each sampled problem only has a single goal state, chosen
uniformly at random among the eight possible cells. All
transitions have reward 0 except for transitions into the goal
state, which yield +1. No slip probability is used. All
agents start in the bottom left corner of the grid.

Results for the initialization experiments are presented in
Figure 3, with the Tight grid in the top row and Spread grid
in the bottom. Notably, Q-learning paired with MAXQINIT
outperformed Q∗avg and VMAX. Although Q∗avg is a Q-
function of the optimal fixed policy, learning algorithms
with optimistic initialization quickly outperformed it. Simi-
larly, for both R-Max and Delayed-Q, MAXQINIT consis-
tently outperformed or matched the performance of VMAX.

Collectively, these empirical findings in suggest that
MAXQINIT is a general, principled, and practical means
of safely accelerating learning in lifelong RL. Naturally,
scaling our approach is a direction of future work.
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(c) Delayed-Q Spread
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(d) Q-learning Tight
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(e) R-Max Tight
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Figure 3: Comparison of Q-learning, Delayed-Q, and R-Max with Q-function initialized by VMAX and MaxQInit (and
average MDP for Q-learning). Plots show reward averaged over 100 MDP samples from D.
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Figure 4: Comparison of Delayed-Q with a varied number
of task samples prior evaluation.

4.2.1. EFFECT OF SAMPLE BUDGET ON PERFORMANCE

In our final experiment, we explore the choice of δ on
MAXQINIT and the other initialization methods. That is,
each algorithm runs k = ln(δ)/ ln(1 − pmin) tasks with
the initial Q-function set to VMAX, then we plot the result-
ing algorithms performance using Q̂max for 60 tasks. The
task is an 11× 11 grid world where the agent starts at the
opposite corner. The goal is chosen uniformly among the
21 cells within five moves from the corner. We set m = 5,
ε1 = 0.001, with the true pmin = 1

21 . We test with δ set
to each of {.35, 0.13, .05}, resulting in k = {20, 40, 60}

task samples to learn from. The results—presented in Fig-
ure 4—suggest that even with a few samples, MAXQINIT
is an effective means of accelerating lifelong RL.

5. Conclusion
This paper addresses the question: which knowledge should
be transferred in lifelong RL? We formalize our answer
through two simple families of results. First, we derive poli-
cies that maximize expected behavior over a distribution of
tasks, highlighting subtleties of task distributions that effect
decision making. Second, we use these results to introduce
MAXQINIT, an algorithm for updating initializations in life-
long learning that trades off between tempered optimism
and lowering sample complexity. Our experiments explore
the performance of the jumpstart policies and showcase the
practicality of MAXQINIT for accelerating algorithms in
lifelong RL in simple domains.

In future work we hope to to generalize these results beyond
the limited setting we study here. In particular, we take our
findings about policy and value transfer to suggest paths
for making optimal use of options in lifelong RL, an active
focus of recent literature (Brunskill & Li, 2014).
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We here include proofs and a visual of the Octogrid domain.

A. Proofs
Theorem 3.2. For a distribution of MDPs with R ∼ D,

EM∈M[V
π∗avg

M (s)] ≥ max
M∈M

Pr(M)V ∗M (s).

Proof. Ramachandran Amir (2007) also showed that the
value function V πavg of an average MDP is the weighted
average of the MDPs in the distribution,

V πavg(s) =
∑
M∈M

Pr(M)V πM (s). (1)

Thus,

EM∈M[V
π∗avg

M (s)] =
∑
M∈M

Pr(M)V
π∗avg

M (s)

= V
π∗avg
avg (s)

= max
π

V πavg(s)

= max
π

∑
M∈M

Pr(M)V πM (s)

≥ max
π

max
M∈M

Pr(M)V πM (s)

= max
M∈M

Pr(M)max
π

V πM (s)

= max
M∈M

Pr(M)V ∗M (s).

Since we assume R(s, a) ≥ 0 for all s, a, we infer that∑
M∈M Pr(M)V πM (s) ≥ maxM∈M Pr(M)V πM (s), thus

concluding the proof. .

Corollary 3.2.1. The bound in Theorem 3.2 is tight.

Proof. Next we the bound is by an example MDP distribu-
tion shown in Figure 1.

In the MDP i the agent gets a reward if it executes ai in
MDP i:

RM (s0, ai) =

{
1 M = i

0 otherwise

s0

g

a0 a1 a2

Figure 1: An example of a MDP which an average MDP
solution returns a lower bound value.

In this distribution of MDPs, the optimal agent always
gets reward of 1 where as the optimal average MDP agent
gets maxM∈M Pr(M) reward on average. In this setting,
V π
∗
avg (s) = maxM∈M Pr(M)V ∗M (s). Thus the bound is

tight.

Corollary 3.4. For the G ∼ D setting,

EM∈M[V
π∗avg

M (s)]

≥ min
M∈M

Pr(M) max
M ′∈M

Pr(M ′)V ∗M ′(s).

Proof. We first leverage the following lemma:

Lemma 3.4.1.

max
M∈M

Pr(M)V πM (s) ≤ V πavg(s)

≤
∑
M∈M

Pr(M)V πM (s)/ min
M ′∈M

Pr(M ′)

(Proof sketch for lower bound): Let an MDP M ′ be the
same MDP as M except it transits to a terminal state from
goal nodes (and acquires a reward) by probability of Pr(M)
instead of probability of 1. The value V πM ′(s) of state s in
M ′ is at least as large as Pr(M)V πM (s). Thus, the value
of state s in M ′ is lower than or equal to that in the aver-
age MDP as it reaches the goal less frequently. V πM ′(s) is
smaller that or equal to V πavg(s) as the average MDP has
larger or equal probability of reaching the terminal state.
Thus, for any M ∈M:

V πavg(s) ≥ V πM ′(s) ≥ Pr(M)V πM (s).
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(Proof sketch for upper bound):

V πavg(s) ≤
∑
M∈M

V πM (s)

≤
∑
M∈M

Pr(M)V πM (s)/ min
M ′∈M

Pr(M ′).

Now, we turn to the theorem.

EM∈M[V
π∗avg

M (s)] =
∑
M∈M

Pr(M)V
π∗avg

M (s)

≥ min
M∈M

Pr(M)V
π∗avg
avg (s)

= min
M∈M

Pr(M)max
π

V πavg(s)

≥ min
M∈M

Pr(M)max
π

max
M ′∈M

Pr(M ′)V πM ′(s)

= min
M∈M

Pr(M) max
M ′∈M

Pr(M ′)V ∗M ′(s).

Theorem 3.8. Suppose A is an algorithm that produces ε
accurate Q functions for a subset of the state action space
given an MDP M , an initial state s0, and a horizon H . For
a given δ ∈ (0, 1], after

t ≥ ln(δ)

ln(1− pmin)
, (2)

sampled MDPs, for pmin = minM∈M Pr(M), the
updating-max shaping method will return a shaped Q-
function Q̂max such that for all state action pairs (s, a):

Q̂max(s, a) ≥ max
M

Q∗M (s, a), (3)

with probability 1− δ.

Proof. Consider an arbitrary state action pair (s,a).

After t samples, we choose:

Q̂∗max(s, a) , max
M

Q̂∗M (s, a). (4)

After t samples, we let the following event define a mistake:

Q̂∗max(s, a) < max
M

Q∗M (s, a). (5)

First, we suppose that for each of sampled MDP M , our
learning algorithm computes a partial but nearly accurate
Q-function. That is, for some small ε:

Q̂∗M (s, a) =

{
Q∗M (s, a)± ε c(s, a) ≥ m
VMAX otherwise

(6)

That is, letting c(s, a) denote the number of times a was
executed in s: any state action pairs that were visited suf-
ficiently often (more than m for some chosen m << H)

result in an ε-accurate Q function. Otherwise, the algorithm
returns VMAX.

Under these conditions, for a given state action pair, surely,
for any MDP seen during the t samples Mi:

Q̂∗max(s, a) ≥ max
M∈Mseen

Q∗M (s, a) (7)

Therefore, the mistake event defined by Equation 5 only
occurs when we miss an MDP in the distribution that has
a higher Q∗(s, a) than our estimate. We assume that the
distribution has a lower bound on MDP probabilty:

pmin , min
M∈M

Pr(M). (8)

Accordingly, we upper bound the mistake probability ac-
cording to the probability that no such MDP was sampled
over t samples, captured by the cumulative geometric distri-
bution:

1− (1− pmin)m ≥ 1− δ. (9)

Simplifying:

1 + δ ≥ 1 + (1− pmin)t

ln(δ) ≥ ln(1− pmin) · t
ln(δ)

ln(1− pmin)
≤ t

Therefore, after

t ≥ ln(δ)

ln(1− pmin)
, (10)

sampled MDP we will have seen all MDPs in the distribution
with high probability.

B. Octogrid

Figure 2: The Octogrid task distribution. The goal appears
in exactly one of the 12 green circles chosen uniformly at
random, with the agent starting in the center at the triangle.


