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Abstract
Reward is the driving force for reinforcement-
learning agents. We here set out to understand the
expressivity of Markov reward as a way to capture
tasks that we would want an agent to perform. We
frame this study around three new abstract notions
of “task”: (1) a set of acceptable behaviors, (2) a
partial ordering over behaviors, or (3) a partial or-
dering over trajectories. Our main results prove that
while reward can express many of these tasks, there
exist instances of each task type that no Markov
reward function can capture. We then provide a
set of polynomial-time algorithms that construct a
Markov reward function that allows an agent to per-
form each task type, and correctly determine when
no such reward function exists.

1 Introduction
At the heart of artificial intelligence (AI) is the study of agents
that learn to explore, plan, communicate, and pursue goals.
The reinforcement-learning (RL) problem puts the study of
such agents front and center under the assumption that we fo-
cus on agents that learn to maximize reward. In this sense,
reward plays a significant role as a general purpose signal
in RL: For any desired behavior, task, or other characteristic
of agency, there must exist a reward signal that can incen-
tivize an agent to learn to realize these desires. The expres-
sivity of reward is taken as a backdrop assumption that frames
RL, sometimes called the reward hypothesis [Littman, 2017;
Christian, 2021]: “...all of what we mean by goals and pur-
poses can be well thought of as maximization of the expected
value of the cumulative sum of a received scalar signal (re-
ward)” [Sutton, 2004]. We here provide an extended abstract1
that establishes first steps toward a systematic study of the re-
ward hypothesis by examining the expressivity of reward as a
signal, proceeding in three steps.

An Account of “Task”. As rewards encode tasks, goals,
or desires, we first ask, “what is a task?”. We frame our
study around a thought experiment (Figure 1) involving the

1This is an extended abstract of a paper [Abel et al., 2021] that
won an outstanding paper award at NeurIPS 2022.

Figure 1: Alice, Bob, and the artifacts of task definition (blue) and
task expression (purple).

interactions between a designer, Alice, and a learning agent,
Bob, drawing inspiration from Ackley and Littman [1992],
Sorg [2011], and Singh et al. [2009]. In this thought exper-
iment, we draw a distinction between how Alice thinks of a
task, and the means by which Alice incentivizes Bob to pur-
sue this task. This distinction allows us to analyze the ex-
pressivity of reward as an answer to the latter question, con-
ditioned on how we answer the former. Concretely, we con-
sider three kinds of task in the context of finite Markov Deci-
sion Processes (MDPs): A task is either (1) a set of acceptable
behaviors (policies), (2) a partial ordering over behaviors, or
(3) a partial ordering over trajectories. Given these three task
types, we then examine the expressivity of reward.

Expressivity of Markov Reward. The core of our study
asks whether there are tasks Alice would like to convey that
admit no characterization in terms of a Markov reward func-
tion. Our emphasis on Markov reward functions, as opposed
to arbitrary history-based reward functions, is motivated by
several factors. First, disciplines such as computer science,
psychology, biology, and economics typically rely on a no-
tion of reward as a numerical proxy for the immediate worth
of states of affairs (such as the fitness benefits of a pheno-
type). Given an appropriate way to describe states of affairs,
Markov reward functions can represent immediate worth in
an intuitive manner that also allows for reasoning about com-
binations, sequences, or re-occurrences of such states of af-
fairs. Second, it is not clear that general history-based re-
wards are a reasonable target for learning as they suffer from
the curse of dimensionality in the length of the history. Lastly,
Markov reward functions are the standard in RL. A rigorous
analysis of which tasks they can and cannot convey may pro-



vide guidance into when it is necessary to draw on alternative
formulations of a problem. In light of our focus on Markov
rewards, we treat a reward function as accurately expressing
a task just when the optimal value function it induces in an
environment adheres to the constraints of the given task.

Main Results. We find that, for all three task types, there
are environment–task pairs for which there is no Markov re-
ward function that realizes the task (Theorem 3.1). In light
of this finding, we design polynomial-time algorithms that
can determine, for any given task and environment, whether
a reward function exists in the environment that captures the
task (Theorem 3.2). When such reward functions do exist,
the algorithms also return one of them. In this sense, we take
the perspective that these algorithms can be used to identify
when the given representation of state might be insufficient
for learning to solve the desired task. We take these findings
to shed light on the nature of reward maximization as a prin-
ciple, and highlight pathways for further investigation.

Background. RL defines the problem facing an agent that
learns to improve its behavior over time by interacting with
its environment. We make the typical assumption that the RL
problem is well modeled by an agent interacting with a fi-
nite Markov Decision Process (MDP), defined by the tuple
(S,A, R, T, γ, s0). An MDP gives rise to deterministic be-
havioral policies, π : S → A, and the value, V π : S → R,
and action–value, Qπ : S × A → R, functions that mea-
sure their quality. We will refer to a Controlled Markov Pro-
cess (CMP) as an MDP without a reward function, which we
denote E for environment. We assume that all reward func-
tions are deterministic, and may be a function of either state,
state-action pairs, or state-action-state triples, but not history.
Henceforth, we simply use “reward function” to refer to a de-
terministic Markov reward function for brevity, but note that
more sophisticated settings beyond MDPs and deterministic
Markov reward functions are important directions for future
work. For more on MDPs or RL, see the books by Puter-
man [2014] and Sutton and Barto [2018] respectively. We
also note that there is considerable relevant literature that fo-
cuses on understanding reward, and refer readers to Abel et
al. [2021] for a full exposition of related work.

2 Three Task Types: SOAPs, POs, and TOs
Consider an onlooker, Alice, and a learning agent, Bob, en-
gaged in the interaction pictured in Figure 1. Suppose that
Alice has a particular task in mind that she would like Bob to
learn to solve, and that Alice constructs a reward function to
incentivize Bob to pursue this task. Here, Alice is playing the
role of “all of what we mean by goals and purposes” for Bob
to pursue, with Bob playing the role of the standard reward-
maximizing RL agent. That is, we suppose Alice might think
of one of three kinds of task: 1) A set of acceptable policies,
2) A partial ordering over policies, or 3) A partial ordering
over trajectories. We adopt these three as they can capture
many kinds of task while also allowing a great deal of flexi-
bility in the level of detail of the specification.

Set Of Acceptable Policies. A classical view of the equiva-
lence of two reward functions is based on the optimal policies

they induce. For instance, Ng et al. [1999] develop potential-
based reward shaping by inspecting which shaped reward sig-
nals will ensure that the optimal policy is unchanged. Extrap-
olating, it is natural to say that for any environment E, two
reward functions are equivalent if the optimal policies they
induce in E are the same. In this way, a task is viewed as a
choice of optimal policy. However, this notion of task fails to
allow for the specification of the quality of other behaviors.
For this reason, we generalize task-as-optimal-policy to a set
of acceptable policies, defined as follows.

Definition 2.1. A set of acceptable policies (SOAP) is a non-
empty subset of the deterministic policies, ΠG ⊆ Π, with Π
the set of all mappings from S to A for a given E.

With one task type defined, it is important to address what
it means for a reward function to properly realize or express a
task in a given environment. We offer the following account.

Definition 2.2. A reward function is said to realize a task
T in an environment E just when the start-state value (or
trajectory-return) induced by the reward function exactly ad-
heres to the constraints of T .

Precise conditions for the realization of each task type are
provided alongside each task definition, with a summary pre-
sented in column four of Table 1. For SOAPs, we take the
start-state value V π(s0) to be the mechanism by which a re-
ward function realizes a SOAP. That is, for a given E and
ΠG, a reward function R is said to realize ΠG in E when
the start-state value function is optimal for all good poli-
cies, and strictly higher than the start-state value of all other
policies. It is clear that SOAP strictly generalizes a task in
terms of a choice of optimal policy, as captured by the SOAP
ΠG = {π∗}.

We note that there are two natural ways for a reward func-
tion to realize a SOAP: First, each πg ∈ ΠG has optimal
start-state value and all other policies are sub-optimal. We
call this type equal-SOAP, or just SOAP for brevity. Al-
ternatively, we might only require that the acceptable poli-
cies are each near-optimal, but are allowed to differ in start-
state value so long as they are all better than every bad pol-
icy πb ∈ ΠB . That is, in this second kind, there exists an
ε ≥ 0 such that every πg ∈ ΠG is ε-optimal in start-state
value, V ∗(s0) − V πg (s0) ≤ ε, while all other policies are
worse. We call this second realization condition range-SOAP.
We note that the range realization generalizes the equal one:
Every equal-SOAP is a range-SOAP (by letting ε = 0). How-
ever, there exist range-SOAPs that are expressible by Markov
rewards that are not realizable as an equal-SOAP. We illus-
trate this fact with the following proposition. All proofs are
presented in the appendix of the full version of the paper.

Proposition 2.1. There exists a CMP, E, and choice of ΠG

such that ΠG can be realized under the range-SOAP crite-
rion, but cannot be realized under the equal-SOAP criterion.

One such CMP is pictured in Figure 2b. Consider the
SOAP ΠG = {π11, π12, π21}, where π21 denotes the pol-
icy {s0 7→ a2, s1 7→ a1}: Under the equal-SOAP criterion,
if each of these three policies are made optimal, any reward
function will also make π22 (the only bad policy) optimal as
well. In contrast, for the range criterion, we can choose a



Name Notation Generalizes Constraints Induced by T

SOAP ΠG task-as-π∗ equal: V πg (s0) = V πg′ (s0) > V πb(s0), ∀πg,πg′∈ΠG,πb∈ΠB

range: V πg (s0) > V πb(s0), ∀πg∈ΠG,πb∈ΠB

PO LΠ SOAP (π1 ⊕ π2) ∈ LΠ =⇒ V π1(s0)⊕ V π2(s0)

TO Lτ,N task-as-goal (τ1 ⊕ τ2) ∈ Lτ,N =⇒ G(τ1; s0)⊕G(τ2; s0)

Table 1: A summary of the three proposed task types. We further list the constraints that determine whether a reward function realizes each
task type in an MDP, where we take ⊕ to be one of ‘<’, ‘>’, or ‘=’, and G is the discounted return of the trajectory.

reward function that assigns lower rewards to a2 than a1 in
both states. In general, we take the equal-SOAP realization
as canonical, as it is naturally subsumed by our next task type.

Partial Ordering on Policies. Next, we suppose that Alice
chooses a partial ordering on the deterministic policy space.
That is, Alice might identify some great policies, some good,
and some bad policies to strictly avoid, and remain indifferent
to the rest. POs strictly generalize equal-SOAPs, as any such
SOAP is a special choice of PO with only two equivalence
classes. We offer the following definition of a PO.

Definition 2.3. A policy order (PO) of the deterministic poli-
cies Π is a partial order, denoted LΠ.

As with SOAPs, we take the start-state value V π(s0) in-
duced by a reward function R as the mechanism by which
policies are ordered. That is, given E and LΠ, we say that a
reward function R realizes LΠ in E if and only if the result-
ing MDP, M = (E,R), produces a start-state value function
that orders Π according to LΠ.

Partial Ordering on Trajectories. A natural generaliza-
tion of goal specification enriches a notion of task to include
the details of how a goal is satisfied—that is, for Alice to
relay some preference over trajectory space [Wilson et al.,
2012], as is done in preference-based RL [Wirth et al., 2017].
Concretely, we suppose Alice specifies a partial ordering on
length-N trajectories of (s, a) pairs, defined as follows.

Definition 2.4. A trajectory ordering (TO) of length N ∈ N
is a partial ordering Lτ,N , with each trajectory τ consisting
of N state–action pairs, {(s0, a0), . . . , (aN−1, sN−1)}, with
s0 the start state.

As with PO, we say that a reward function realizes a trajec-
tory ordering Lτ,N if the ordering determined by each trajec-
tory’s cumulative discounted N -step return from s0, denoted
G(τ ; s0), matches that of the given Lτ,N . We note that trajec-
tory orderings can generalize goal-based tasks at the expense
of a larger specification. For instance, a TO can convey the
task, “Safely reach the goal in less than thirty steps, or just
get to the subgoal in less than twenty steps.”

Recap. We propose to assess the expressivity of reward by
first restricting attention to SOAPs, POs, or TOs, as summa-
rized by Table 1. We say that a task T is realized in an en-
vironment E under reward function R if the start-state value
function (or return) produced by R imposes the constraints
specified by T , and are interested in whether reward can al-
ways realize a given task in any choice of E.

3 Results
With our definitions and objectives in place, we now present
our main results.

3.1 Expressing SOAPs, POs, and TOs
We first ask whether Markov reward can always realize a
given SOAP, PO, or TO, for an arbitrary E. Our first result
states that the answer is “no”.
Theorem 3.1. For each task type, there exist (E,T ) pairs
for which no Markow reward function realizes T in E.

Thus, Markov reward is incapable of capturing certain
tasks. What tasks are they, precisely? Intuitively, inexpress-
ible tasks involve policies or trajectories that are correlated
in value in an MDP. That is, if two policies are nearly iden-
tical in behavior, it is unlikely that reward can capture the
PO that places them at opposite ends of the ordering. A sim-
ple example is the “always move the same direction” task in
a grid world, with state defined as an (x, y) pair. The SOAP
ΠG = {π←, π↑, π→, π↓} conveys this task, but no Markov re-
ward function can make these policies strictly higher in value
than all others.
Inexpressible SOAPs. Observe the two CMPs pictured in
Figure 2a and Figure 2b, depicting two kinds of inexpress-
ible SOAPs. In the top figure, we consider the SOAP ΠG =
{π21}, containing only the policy that executes a2 in the left
state (s0), and a1 in the right (s1). This SOAP is inexpressible
through reward, but only because reward cannot distinguish
the start-state value of π21 and π22 since the policies differ
only in an unreachable state. In the bottom figure, we find
a more interesting case: The chosen SOAP is similar to the
XOR function, ΠG = {π12, π21}. Here, the task requires that
the agent choose each action in exactly one state. However,
there cannot exist a reward function that makes only these
policies optimal, as by consequence, both policies π11 and
π22 must be optimal as well.

3.2 Constructive Algorithms: Task to Reward
We now analyze how to determine whether an appropriate
reward function can be constructed for any (E,T ) pair. We
pose a general form of the reward-design problem [Mataric,
1994; Sorg et al., 2010; Dewey, 2014] as follows.
Definition 3.1. The REWARDDESIGN problem is: Given
E = (S,A, T, γ, s0), and a T , output a reward function
Ralice that ensures T is realized in M = (E,Ralice).

Indeed, for all three task types, there is an efficient algo-
rithm for solving the reward-design problem.



(a) Steady State Case (b) Entailment Case

(c) Vary SOAP Size (d) Vary Entropy of T (e) Vary the Spread of ΠG

Figure 2: (Top Row) Two CMPs in which there is a SOAP that is not expressible under any Markov reward function. On the left, ΠG = {π21}
is not realizable, as π21 can not be made better than π22 because s1 is never reached. On the right, the XOR-like-SOAP, ΠG = {π12, π21}
is not realizable: To make these two policies optimal, it is entailed that π22 and π11 must be optimal, too. (Bottom Row) The approximate
fraction of SOAPs that are expressible by reward in CMPs with a handful of states and actions, with 95% confidence intervals. In each plot,
we vary a different parameter of the environment or task to illustrate how this change impacts the expressivity of reward, showing both equal
(color) and range (grey) realization of SOAP.

Theorem 3.2. The REWARDDESIGN problem can be solved
in polynomial time, for any finite E, and any T , so long as
reward functions with infinitely many outputs are considered.

Therefore, for any choice of E and a SOAP, PO, or TO,
we can find a reward function that perfectly realizes the task
in the given environment, if such a reward function exists.
Each of the three algorithms are based on forming a linear
program that matches the constraints of the given task type,
which is why reward functions with infinitely many outputs
are required.

3.3 Experiments
Lastly, we conduct an experiment to shed further light on the
analysis. Our focus is on SOAPs, though we anticipate the
insights extend to POs and TOs with little complication.
SOAP Expressivity. Concretely, we estimate the fraction
of SOAPs that are expressible by Markov reward in small
CMPs as we vary expects of the environment or task. For
each data point, we sample 200 random SOAPs and run the
algorithm mentioned in Theorem 3.2 to determine whether
each SOAP is realizable in the given CMP. We ask this ques-
tion for both the equal (color) and range (grey) SOAP realiza-
tion. We inspect SOAP expressivity as we vary three different
characteristics of E or ΠG: The number of good policies in
each SOAP, the Shannon entropy of T at each (s, a) pair, and
the “spread” of each SOAP. The spread approximates average
edit distance among policies in ΠG determined by randomly
permuting actions of a reference policy by a coin weighted
according to the value on the x-axis. We use the same set
of CMPs for each environment up to any deviations explic-
itly made by the varied parameter (such as entropy). Unless

otherwise stated, each CMP has four states and three actions,
with a fixed but randomly-chosen transition function.

Results are presented in Figure 2. We find that our theory
is borne out in a number of ways. First, as Theorem 3.1 sug-
gests, we observe that SOAP expressivity is strictly less than
one in nearly all cases. This is evidence that inexpressible
tasks are not only found in manufactured corner cases, but
rather that expressivity is a spectrum. We further observe—
as predicted by Proposition 2.1—separation between the ex-
pressivity of range-SOAP (grey) vs. equal-SOAP (color);
there are many cases where we can find a reward function
that makes the good policies near-optimal and better than the
bad, but cannot make those good policies all exactly-optimal.
Additionally, several trends emerge as we vary the parameter
of environment or task, though we note that such trends are
likely specific to the choice of CMP and may not hold in gen-
eral. Perhaps the most striking trend is in Figure 2e, which
shows a decrease in expressivity as the SOAPs become more
spread-out.

4 Conclusion

We here examine the expressivity of Markov reward, framed
around three accounts of task. Our main results show that
there exist choices of task and environment in which Markov
reward cannot express the chosen task, but there are efficient
algorithms that decide whether a task is expressible and con-
struct a realizing reward function when it exists. We take
these to be first steps toward understanding the full scope of
the reward hypothesis, and hope this work provides new con-
ceptual perspectives on reward and its place in RL and AI.
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