
State Abstractions for Lifelong Reinforcement Learning (Appendix)

David Abel 1 Dilip Arumugam 1 Lucas Lehnert 1 Michael L. Littman 1

We here include proofs omitted from the paper.

Theorem 3.1 (Efficient Abstractions). Consider any tran-
sitive predicate on state pairs, p, that takes computational
complexity cp to evaluate for a given state pair. The state
abstraction type φp that induces the smallest abstract state
space can be computed1 in O(|S|2 · cp).

Proof. Let cp denote the computational complexity associ-
ated with computing the predicate p for a given state pair.
Consider the algorithm consisting of the following four rules
for constructing abstract clusters (which define the abstract
states) using queries to each of the |S|2 state pairs. Let
(si, sj) denote the current state pair:

1. If p(si, sj) is true, and neither state is in an abstract
cluster yet, make a new cluster consisting of these two
states.

2. If p(si, sj) is true and only one of the states is already
in a cluster, add the other state to the existing cluster.

3. If p(si, sj) is true and both si and sj are in different
cluster, merge the clusters.

4. If p(si, sj) is false, add each state not yet in a cluster
to its own cluster.

Running this algorithm makes one query per state pair, of
which there are |S|2. Thus, the complexity is O

(
|S|2 · cp

)
.

From steps 1-3, after iterating through the possible state
pairs, there cannot exist a state pair (sx, sy) such that
p(sx, sy) is true but sx and sy are in different clusters. Fur-
ther, by transitivity, when we apply the cluster merge in step
3, we are guaranteed that every state pair in the resulting
cluster necessarily satisfies the predicate. Thus, we compute
the smallest clustering definable by p.

Theorem 3.2. The φQ∗d abstraction type is a subclass of
φQ∗ε , studied by Abel et al. (2016) and Hutter (2016), with

1Notably, the complexity of cp dictates the overall complexity
of computing φp.

d = ε, and therefore, for a single MDP:

V ∗(s0)− V
πφQ∗

d (s0) ≤
2dRMAX

(1− γ)2
. (1)

Proof. For any two state-action pairs that satisfy the predi-
cate φ∗d, we know by definition of the predicate that for each
action a, there exists a Qlower such that:

Qlower ≤ Q(s1, a) ≤ Qlower + d,

Qlower ≤ Q(s2, a) ≤ Qlower + d.

Therefore, for each action a:

|Q(s1, a)−Q(s2, a)| ≤ d. (2)

Therefore, φ∗Q,d is a subclass of φ∗Q,ε.

Theorem 3.2 (Abstract State Space Size). For a given d,
the function belonging to the transitive abstraction type
φQ∗d that induces the smallest possible abstract state space
size is at most 2|A| times larger than that of the maximally
compressing instance of type φQ,ε, for d = ε. Thus, let-
ting Sd denote the abstract state space associated with the
maximally compressing φQ∗d , and letting Sε denote the ab-
stract state space associated with the maximally compress-
ing φQε ,:

|Sε| · 2|A| ≥ |Sd|. (3)

Proof. Let M be an arbitrary MDP. Consider a set of states
S̃ ⊂ S clustered together under φQ∗ε and, in particular,
consider the Q-values of all states in S̃ for a particular
action, a ∈ A. Note that, by construction of φQ∗ε , for any

∀s,s′∈S̃ : |Q(s, a)−Q(s′, a)| ≤ ε,

Recall that, intuitively, φQ∗d is a discretization of the interval
[0,VMAX] where d controls the placement of boundaries,
forming buckets of Q-values. The Q-values for all states in
S̃ and for action a reside in a single sub-interval of length ε.

Letting d = ε, the placement of boundaries that form φQ∗d
could break the ε-interval of Q-values for the non-transitive

State Abstractions for Lifelong Reinforcement Learning (Appendix)

cluster S̃ no more than once, resulting in the creation of
at most two new state clusters in φQ∗d . Repeating the pro-
cess ∀a ∈ A, these separations within the original clus-
ter compound, resulting in at most 2|A| such subdivisions
and, accordingly, 2|A| clusters in φQ∗d for each cluster in
φQ∗ε .

Corollary 3.3.1 (PAC Value Loss). Consider any state-
abstraction type φp with value loss τp, that is, in the tradi-
tional single task setting:

∀s∈S : V ∗(s)− V πφ∗p (s) ≤ τp. (4)

Then, the PAC abstraction φδp, in the lifelong setting, has
value loss:

E
M∼D

[
V ∗M (s)− ∀s∈S : V

πφ∗p
M (s)

]
≤

ε(1− 3δ)τp + 3δVMAX. (5)

Proof. By definition of PAC abstractions, with probability
1 − δ, the abstraction function φδp aggregates iff ρpδ+ε, for
some small ε ∈ (−δ, δ).

Then, with probability 1 − δ, there is at least a 1 − δ − ε
chance that the predicate holds for a particular state, by
definition of ρpδ . Thus, by definition of ρpδ , with probability
(1− δ)(1− δ−ε), the state abstraction correctly aggregates,
and consequently the inherited value loss τp bound holds. If
the abstraction incorrectly aggregates, the value loss can be
up to VMAX.

Letting ε = δ, we see that the PAC loss is at worst upper
bounded by a convex mixture of τp with probability (1−3δ),
and with probability 3δ, is VMAX. Thus, the value loss of
φδp is:

∀s∈S : E
M∼D

[
V ∗M (s)− V

πφ∗p
M (s)

]
≤

ε(1− 3δ)τp + 3δVMAX. (6)

Theorem 3.4 (PAC Abstraction Sample Bound). Let Ap be
an algorithm that given an MDP M = 〈S,A,R, T , γ〉 as
input can determine if p(s1, s2) is true for any pair of states,
for any state abstraction type.

Then, for a given δ ∈ (0, 1] and ε ∈ (−δ, δ), we can com-

pute φ̂δ+εp after m ≥ ln(2
δ)

ε2 sampled MDPs from D.

Proof. We are given as input a δ ∈ (0, 1], a distribution over
MDPs D, and the algorithm Ap which, given an MDP M
and a state pair outputs pM (s, s′).

Consider an arbitrary pair of states s and s′. For m sampled
MDPs, the algorithm Ap can produce a sequence of m
predicate evaluations:

p1(s, s
′), · · · , pm(s, s′). (7)

Let p̂ be the empirical mean over the predicate sequence:

p̂ =
1

m

m∑
i=1

pi(s, s
′). (8)

The clustering algorithm is quite simple: for our input δ ∈
(0, 1], cluster all state pairs (s, s′) such that p̂(s, s′) ≥ 1− δ
after m samples.

We now prove that, for a particular setting of m, the result-
ing cluster assignments constitute a state abstraction that
clusters a pair of states only if the predicate is true with high
probability.

First, let p denote the probability that p is true over the
distribution:

p(s, s′) = Pr
M∼D

{p(s, s′) = 1}. (9)

Using Hoeffding’s bound, we upper bound the probability
that p̂ deviates from p by more than some small ε ∈ (0, δ):

Pr {|p̂(s, s′)− E [p̂(s, s′)]| ≥ ε} (10)

=Pr {|p̂(s, s′)− p(s, s′)| ≥ ε} ≤ 2e−2mε
2

. (11)

Thus, for δ = 2e−2mε
2

:

Pr {|p̂(s, s′)− p(s, s′)| < ε} > 1− δ. (12)

Rewriting:

Pr {|p̂(s, s′)− p(s, s′)| < ε} > 1− δ (13)
⇐⇒ Pr {−ε < p̂(s, s′)− p(s, s′) < ε} > 1− δ, (14)

By algebra, note that, when m ≥ ln 2
δ

ε2 , the condition of
Equation 12 holds.

Let ρpδ denote the predicate that is true if and only if p is
true over the distribution with high probability for a given δ:

ρpδ(s1, s2) =

{
1 p ≥ 1− δ
0 otherwise.

(15)

Now, we form our state abstraction under the following rule:

φ̂δp(s1) = φ̂δp(s2) ≡ p̂(s, s′) > 1− δ. (16)

If, after m samples, p̂ were identical to p, then we would
have:

∀s,s′ : Pr
M∼D

{ρpδ(s, s
′) ≡ φ̂δp(s1) = φ̂δp(s2)} ≥ 1−δ. (17)

State Abstractions for Lifelong Reinforcement Learning (Appendix)

Hence, p̂ deviates from p by at most ε with probability 1− δ.
Thus, for some ε ∈ (−δ, δ), p̂ + ε = p. Therefore, the
clustering rule defined by Equation 16 ensures there exists
an ε such that, with high probability, we cluster according
to:

∀s1,s2 : ρpδ+ε(s1, s2) ≡ φ
δ
p(s1) = φδp(s2). (18)

We conclude that, for m ≥ ln 2
δ

ε2 sampled and solved MDPs,
we compute a lifelong PAC state abstraction φ̂δp.

Theorem 3.5. Consider an MDP M and an instance of R-
Max (Brafman & Tennenholtz, 2002) that breaks ties using
round-robin selection over actions. This algorithm is PAC-
MDP in the raw state space. Next, pair a domain with any
state-abstraction function φ. If R-Max interacts with M by
projecting any received state s through φ, then R-Max is
no longer guaranteed to be PAC-MDP in M . In fact, the
number of mistakes made by R-Max can be arbitrarily large.

Proof. Consider the simple three state chain:

s0 s1 g

+κ +κ +RMAX

The agent has three actions, left, right, and loop,
associated with their natural effects (left in s0 is a self
loop with reward 0, while right moves the agent to s1,
and so on).

In states s0 and s1, let the reward for loop be some small
constant κ, and let the loop action in s3 yield RMAX
reward.

Let ε = 0.1, γ = 0.95, s0 define the initial state, and
κ = 0.001. Then

∀s∈{s0,s1,s2} : max
a1,a2

Q∗(s, a1)−Q∗(s, a2) ≤ ε.

Therefore, for ε = 0.1, a valid clustering assigns φ(s0) =
φ(s1). The R-Max knownness parameter for a state-action
pair is given as m.

To break ties, we suppose R-Max chooses actions according
to a round-robin policy, starting with action left. Thus,
in the abstract, R-Max first chooses left, then right, then
self loop, then left, right, self loop, and so on, until each
state-action pair is known.

In the above problem, this sequence of actions will never
lead the agent out of state s0 or s1. Therefore, after m exe-
cutions of these three actions across states s0 and s1, R-Max

with φ will compute a transition model that never includes
the ability to transition to g. Further, the action loop will
have the largest reward associated with it—κ, a reward cho-
sen to be arbitrarily small—which is thus arbitrarily worse
than the goal reward. So, R-Max will make an unbounded
number of mistakes.

Corollary 3.5.1. For any RL algorithm A whose policy
updates during learning and an arbitrary state abstraction
φ.

Let Aφ denote the algorithm yielded by projecting all in-
coming states to φ(s) before presenting them to A , and
let Mφ = 〈Sφ,A, Tφ,Rφ, γ〉, denote the abstract MDP
induced by φ on M , where:

Sφ = {φ(s) : ∀s∈S},

Rφ(φ(s), a) =
∑

g∈φ−1(φ(s)))

w(g)R(g, a),

Tφ(s, a, s′) =
∑

g∈G(s)

∑
g′∈G(s′)

Tφ(g, a, g′)w(g),

with w(s) is a fixed weighting function and G(s) =
φ−1(φ(s)). That is, G(s) gets all of the true environmental
states in the same cluster as s.

The process yielded by Aφ interacting with M is not identi-
cal to A interacting with Mφ. That is, the expected trajec-
tory taken by the agent is not the same in the two situations.
Formally:

EA [st | s0, π] 6= EAφ
[st | s0, π] , (19)

where st is the state the agent arrives in after t time steps.

Proof. Note that when Mφ is computed directly, the func-
tionsRφ and Tφ assume a fixed weighting function w(s).

Again consider the three state chain from the previous proof.

During typical interaction between M and Aφ, however, no
such fixed weighting function exists for any algorithm A
that updates its policy. That is, the distribution of states the
agent finds itself in will change as its policy changes, and
therefore, w(s) must change, too.

Thus, the process of Aφ interacting with M induces a se-
quence of interactions with abstract MDPs whose transition
and rewards change along with the policy the agent fol-
lows. Thus, for any non-identity φ, for any algorithm A
whose policy changes over time, the resulting interaction is
non-identical.

