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1. Introduction  

Solar energy offers a pollution free and sustainable means of harvesting energy directly from the sun. 
Considerable effort has been directed toward maximizing the efficiency of end-to-end solar systems, 
including the design of photovoltaic cells [15, 26], engineering new photovoltaic architectures and materials 
[24], and solar tracking systems [4]. Solar tracking is especially important for maximizing performance of 
solar panels [8, 38, 21]. Given the proper sensors and hardware, a tracking algorithm can compute the 
relative location of the sun in the sky throughout the day, and a controller can orient the panel to point at the 
sun, illustrated in Figure 1. Its goal is to minimize the angle of incidence between incoming solar radiant 
energy and the grid of photovoltaic cells, as in Eke and Senturk [8], Benghanem [3], King et al. [21] and 
Kalogirou [17]. 

Prior work has consistently demonstrated that panels using a tracking system increase the total energy by a 
substantial amount: Eke and Senturk [8] report that a dual-axis tracker yielded 71 kW/h, compared to a fixed 
panel’s yield of 52 kW/h on the same day. They also report energy harvesting gains of dual-axis tracking 
systems over fixed systems varying from 15% to 40%, depending on the time of year. Mousazadeh et al. 
[32] report that gains from tracking can vary between 0% and 100%, while Clifford and Eastwood [5] report 
a gain of 23% due to tracking in simulation. Solar tracking and control result in non-trivial benefits in solar 
photovoltaic systems.  

 

 

 

Figure 1: In the solar panel control problem, the panel changes its orientation over time to 
maximize total exposure to solar radiant energy. 

Recent work in solar tracking has focused on creating algorithms that are sufficiently accurate to inform 
control of panels, building on the early work of Spencer [41], Walraven [45] and Michalsky [30]. The 
algorithm introduced by Reda and Andreas [37] computes the sun’s location in the sky within ±0.0003◦ of 
accuracy, achieving the highest degree of accuracy of any known algorithm, but is computationally 
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inefficient to the point of impracticality. Grena [12] overcomes these inefficiencies with a tracking algorithm 
that requires an order of magnitude fewer calculations while still achieving ±0.0027◦ of accuracy.  

However, prior literature suggests that a variety of factors contribute to the performance of a panel [21], and 
thus, pointing a panel directly at the sun is not always optimal behavior. Specifically, the total solar 
irradiance falling on a panel is a combination of direct, reflective, and diffuse irradiance [3]. The diffuse 
irradiance typically varies between 15% and 55% of direct irradiance depending on factors like cloud 
coverage and the time of day [34], while a case study by the Cold Climate Housing Research Center in 
Fairbanks, Alaska reports reflective irradiance varying from 5% to 25% of direct irradiance [6]. The 
reflective irradiance varies heavily based on the percentage of irradiance reflected off the surrounding 
ground surface: Typical values for this percentage given by McEvoy et al. [29] vary between 17% (soil), 
25% (grass), 55% (concrete), and 90% (snow). Additionally, changing weather and atmospheric conditions 
can affect the optimal panel orientation [20], as well as shading effects from neighboring panels and foliage 
[14, 33]. Thus, optimal performance may involve prioritizing reflective or diffuse irradiance when direct 
sunlight is not available. 

There are several additional shortcomings to the classical tracking approach. First, tracking algorithms take 
as input a variety of data that require additional hardware such as a barometer, thermometer, or GPS [13], 
increasing the total cost and system complexity. Second, tracking algorithms are only accurate for a fixed 
window of time: The algorithm of Grena [12] is noted as accurate until 2023 AD (due to the subtle 
movements of the earth and sun), while the algorithms in Grena [13] are reported as accurate until 2110 AD. 
Third, trackers ignore the power cost of reorienting panels, and so waste energy on days where the benefit 
of movement is negligible. Lastly, shading effects from neighboring panels or foliage are ignored. 

In this in progress work, we advocate for the use of Reinforcement Learning (RL) to optimize solar panel 
performance. A learned solar panel controller can account for weather change, cloud coverage, power use, 
shading effects, and diverse reflective indices of surroundings, offering an efficient yet adaptive solution 
that can optimize for the given availability of each type of solar irradiance without the need for complex 
hardware, regardless of the location or year. Our primary contribution is twofold: (1) The advancement of 
RL as a candidate solution for solar tracking, including an open source simulation built using recently 
introduced models of solar irradiance, and (2) The validation of the utility of RL approaches for solar panel 
control compared to standard baselines. 

2. Background  

We begin with some background on solar tracking and RL.  

2.1 Solar Tracking  

The amount of solar radiant energy contacting a surface on the earth’s surface (per unit area, per unit time) 
is called irradiance [11]. We denote the total irradiance hitting a panel as Rt, which, per the models 



 

 

developed by Kamali et al. [19], is approximated by the sum of the direct irradiance, Rd, diffuse irradiance 

(light from the sky), Rf , and reflective irradiance, Rr (reflected off the ground or other surfaces). Each of 

these components is modified by a scalar, denoting the effect of the angle of incidence between oncoming 

solar rays and the panel’s orientation, yielding the total:  

 
Additionally, the components Rd and Rf are known to be effected by cloud coverage [23, 35, 44]. 

A controller for a solar panel then seeks to maximize total irradiance, Rt, hitting the panel’s surface. In the 
case of solar trackers, a running assumption is that it is near optimal to orient the panel such that its normal 
vector is pointing at the sun, and thus arises the necessity for accurate solar tracking algorithms. There are 
many types of tracking methods, only a few of which we discuss in this work; for an in-depth survey of solar 
tracking techniques, see Mousazadeh et al. [32].  

2.2 RL Background  

Reinforcement Learning is a computational learning paradigm in which an agent learns to make decisions 
that maximize an unknown reward function through repeated interaction with the agent’s environment. In 
this work, we model the environment as a Markov Decision Process (MDP) [36]. An MDP is a five tuple, 

, where  is a set of states,  is a set of actions,  , is a reward function,                  
, is a probability distribution on next states given a state and action, and , is a 

discount factor, indicating how much the agent prefers immediate reward over future reward. The solution 
to an MDP is called a policy, denoted . The goal of an RL agent is solve for a policy that 
maximizes long term expected reward, defined by the value function,                            , defined by the classic 
Bellman Equation [48]:  

 

Also of interest is the action-value function,  , which denotes the long term expected reward 
of executing an action in a state and behaving optimally thereafter: 

 

For further background on RL, see Sutton and Barto [42] or Kaelbling et al. [16]. 

2.2.1 Agents  

We experiment with two standard learning algorithms: Q-Learning and SARSA, each with a linear function 
approximator to estimate . To test the significance of modeling the sequential aspects of the problem, we 
also conduct experiments with Q-Learning with γ = 0 (so it only maximizes immediate return) and LinUCB 
[25], a standard approach to non-sequential Contextual Bandits. We chose each of the linear approximators 
to illustrate that online, efficient, and lightweight algorithms can be effective in the domain. We chose not 
to experiment with any Deep RL agents [31], as Deep RL typically requires more computational power (and 
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often GPUs), which may be unavailable or limited in the real solar panel setting. However, this could be an 
area of further exploration.  

Q-Learning, introduced by Watkins and Dayan [47], maintains an estimate of  via updates after each 
experience,                   , updating according to the rule:  

 
where     is a learning rate. The linear approximator extends tabular Q-Learning to domains where 
states are described by feature vectors, . Here,  is parameterized by a set of k-vectors, 
wa, where each vector corresponds to action a’s parameters across the state variables, resulting in:  

 

The parameters are updated via the gradient update rule given a single experience,              : 

 

SARSA [40] is similar, but makes its update using the chosen next action instead of the max action: 

 

We pair each of these algorithms with the naïve -greedy policy, which chooses actions according to:  

 

where Unif( ) is the uniform distribution on actions and Bern( ) is a Bernoulli distribution with parameter  
. To increase the expressively of the linear function approximator, we introduce some non-linearity by 

applying a Gaussian radial basis function to each state variable. That is, each state feature is passed through 
the kernel, . For further details about these algorithms, see Geramifard et al. [9]. 

2.2.2 Contextual Bandits  

A simplification of the full RL problem is a non-sequential variant known as the Contextual Bandit 
introduced by Wang et al. [46], which extends the classic Multi-Armed Bandit problem [10] to include a 
context matrix, X, containing a feature vector for each action. That is, each column of X corresponds to each 
action’s context: the entry    denotes the i-th feature of action aj . We let xa denote the context vector 
associated with action a. At each time step, the agent chooses an action, , and receives a payoff 
according to an unknown, possibly stochastic reward function, akin to the full RL problem. Here, agents 
still face the exploration–exploitation dilemma but do not need to learn their estimates from delayed reward.  

We use the contextual bandit framework to assess the importance of modeling the solar panel control 
problem as sequential. The context vector for each action is the received percept from the environment (there 
is no difference in contexts across actions). Due to its simplicity and efficiency, we experiment with the 
LinUCB algorithm developed by Li et al. [25].  
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LinUCB adapts the core ideas of the UCB (Upper Confidence Bound) algorithm [2] to deal with contexts. 
At a high level, LinUCB assumes the underlying reward is determined by a linear payoff matrix , and 
maintains a running estimate . The critical piece of the algorithm is its exploration strategy, which calculates 
a confidence interval on the difference between the agent’s estimate of the expected reward and the actual 
return, which is factored into an overall score for each action. At each round, the agent then selects the action 
with maximal score according to:  

where  represents the confidence interval associated with action a. For the full details, see Li et al. [25].  
 
4. Experiments 

A core piece of this work is the development of a simulated environment to validate the use of RL for solar 
panel control. There are four stages to the simulation: (1) Computing the sun’s location in the sky, relative 
to the panel, (2) Computing Rt, and (3) Generating percepts. To approximate the difficulty of the real world 
problem, we synthesize three classes of perceptions. First, a size four vector indicating the panel’s 
orientation and two angles that define the sun’s location in the sky. The second and third classes of percepts 
are synthesized images of the sky – in the first case, the agent always perceives a clear sky, while in the 
second, we add Gaussian blobs to simulate the observational challenge posed by clouds. Sample percepts 
are pictured in Figure 2. Due to space constraints, we do not divulge the full details of the simulation.2 The 
code for replicating results and further evaluation is publicly available.3 

In each experiment, evaluation is done online, in that the agent is learning while acting to better parallel the 
nature of solar panel control. Our simulation is wrapped in an MDP, where the action space consists of five 
actions: . Executing the nothing action keeps the panel 
orientation fixed, while the other four each shift the panel 2◦ in their respective directions. Each decision 
step is equivalent to three minutes of time passing.  

 

 

Figure 2: Example percepts given to the RL agent with no clouds (left) and simulated cloud 
coverage (right). 
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Our core algorithms are Q-Learning (ql-lin) SARSA (sarsa-lin), and LinUCB (lin-ucb), where the input 
state features vary between percept types. In the first case, there are four state variables: the sun and panel 
angles (in radians). In the second two cases, the state variables are the pixel intensities of the image. We set 
exploration parameter  and learning rate , with a standard annealing schedule, adopted 
from Darken and Moody [7]:  

 
Where t is a time step, and the update is performed every 500 time steps. For ql-lin and sarsa-lin we chose 
to set γ = 0.99 to emphasize the long term consequences of behavior, contrasted with LinUCB and the short-
sighted version of Q-Learning with γ = 0 (q-lin, γ = 0). Our core benchmark algorithm is Algorithm 2 from 
Grena [13], an efficient but accurate solar tracking algorithm, coupled with a controller that always points 
perfectly at the tracker’s estimate of the sun’s location. We also provide results for a fixed panel to illustrate 
the importance of tracking (fixed), and a highly idealized controller that computes the perfect orientation at 
each decision step to illustrate an upper bound on possible performance (optimal), and to visualize the 
degree of sub-optimality of the other approaches.  

 

 

 

 

 

 

 

 

Figure 3: Cumulative irradiance falling on the panel’s surface given different percepts over 
four days in Mildura, Australia (top) and Reykjavík, Iceland (bottom) in July of 2015 

Figure 3 illustrates the cumulative irradiance exposed to each panel in simulated experiments in (top) and 
Iceland (bottom). Notably, with the simple percept of the true sun angles, all of the learning algorithms 
outperform the baseline tracker and fixed panel in Australia, while in Iceland, lin-ucb performs worse than 
the fixed panel for the first two percepts. When just the image is provided in Australia, lin-ucb achieves by 
far the best performance; we hypothesize that this is due to LinUCB’s informed approach to exploration 
compared to the ε-greedy used by sarsa-lin and both ql-lin and ql-lin, γ = 0. Conversely, we see that lin-
ucb continues to struggle in Iceland. However, when clouds are present, lin-ucb performs comparably to 

(a) True Sun Angles (b) Bitmap of the Sky (c) Bitmap of the Cloudy Sky

(d) True Sun Angles (e) Bitmap of the Sky (f) Bitmap of the Cloudy Sky

Figure 4: Cumulative irradiance falling on the panel’s surface given different percepts over four days in Mildura,
Australia in July of 2015

the baseline tracker and fixed panel in Australia, while in Iceland, lin-ucb performs worse than the fixed panel for
the first two percepts. When just the image is provided in Australia, lin-ucb achieves by far the best performance;
we hypothesize that this is due to LinUCB’s informed approach to exploration compared to the "-greedy used by
sarsa-lin and both ql-lin and ql-lin, � = 0. Additionally, when just the sun is in the image, there is
little incentive to forecast expected future reward beyond the immediate next step, which may explain the success of
lin-ucb. This is further corroborated by the fact that ql-lin, � = 0 does quite well in the experiment as well.

Conversely, we see that lin-ucb continues to struggle in Iceland. When clouds are present, lin-ucb performs
comparably to the other learners. The cloudy image percepts pose a challenging RL problem, but still we see that
the simple approaches achieve similar performance as the grena-tracker, and note the substantial room for im-
provement from further training or more complex learners. In Iceland, the results are largely the same as Australia,
though we note that the grena-tracker does better. In all cases, we note that there is room for improvement,
suggesting that more sophisticated approaches may have more success on real panels than current techniques. Further,
these experiments are conducted with power cost of movement set to 0.

In all our simulations, the grena-tracker consistently outperforms the fixed-panel by around 25%, con-
sistent with previously published results [8, 32, 5].

5 Conclusion

We have here demonstrated the benefits of using a reinforcement-learning approach to improving the efficiency of
solar panels over several established baselines. We introduced a high fidelity testbed for the problem of solar energy
harvesting capable of simulating solar irradiance models anywhere on earth with a variety of generated percepts to
approximate real world conditions. We take the end-to-end simulation, and the evaluation of RL on solar panel
control, to be of independent interest to the broader AI and computational sustainability communities.
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the other learners.  The cloudy image percepts pose a challenging RL problem, but still we see that the 
simple approaches achieve similar performance as the grena-tracker, and note the substantial room for 
improvement from further training or more complex learners. In Iceland, the results are largely the same as 
Australia, though we note that the grena-tracker does better. In all cases, there is room for improvement, 
suggesting that more sophisticated approaches may have more success on real panels than current 
techniques. In all our simulations, the grena-tracker consistently outperforms the fixed-panel by around 
25%, consistent with previously published results [8, 32, 5]. 

5. Conclusion  

We have here offered preliminary support for the use of a reinforcement-learning approach to improve the 
efficiency of solar panels. We offer a testbed for the problem of solar energy harvesting capable of simulating 
solar irradiance models with a variety of generated percepts to approximate real world conditions.  

 

 

 

Figure 5: Panel controller prototype (left) and full system schematic diagram (right). 

This work is in progress. Our immediate next step is to implement a functioning RL controller on real solar 
panels and compare its performance to existing approaches. We have designed a prototype, pictured in 
Figure 5, and are currently working on its construction. Additionally, shading, movement, observation, and 
computation all expend energy; incorporating these expenditures explicitly into the reinforcement learning 
problem poses both challenging planning and exploration questions. Lastly, in the long term, we plan on 
applying RL to the analogous control problem presented by solar thermal energy [18].  
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