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Abstract
Solar panels sustainably harvest energy from the sun. To improve performance, panels are often equipped with a tracking mechanism
that computes the sun’s position in the sky throughout the day. Based on the tracker’s estimate of the sun’s location, a controller
orients the panel to minimize the angle of incidence between solar radiant energy and the photovoltaic cells on the surface of the panel,
increasing total energy harvested. Prior work has developed efficient tracking algorithms that accurately compute the sun’s location
to facilitate solar tracking and control. However, always pointing a panel directly at the sun does not account for diffuse irradiance in
the sky, reflected irradiance from the ground and surrounding surfaces, or changing weather conditions (such as cloud coverage), all
of which are contributing factors to the total energy harvested by a solar panel. In this work, we show that a reinforcement learning
(RL) approach can increase the total energy harvested by solar panels by learning to dynamically account for such other factors. We
advocate for the use of RL for solar panel control due to its effectiveness, negligible cost, and versatility. Our contribution is twofold:
(1) an adaption of typical RL algorithms to the task of improving solar panel performance, and (2) an experimental validation in
simulation based on typical solar and irradiance models for experimenting with solar panel control. We evaluate the utility of various
RL approaches compared to an idealized controller, an efficient state-of-the-art direct tracking algorithm, and a fixed panel in our
simulated environment. We experiment across different time scales, in different places on earth, and with dramatically different
percepts (sun coordinates and raw images of the sky with and without clouds), consistently demonstrating that simple RL algorithms
improve over existing baselines.
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1 Introduction

Solar energy offers a pollution free and sustainable means of harvesting energy directly from the sun. Considerable effort has been
directed toward maximizing the efficiency of end-to-end solar systems, including the design of photovoltaic cells or new photovoltaic
materials [15] and solar tracking systems [2]. Solar tracking is especially important for maximizing performance of solar panels [6,
22, 12]. Given the proper sensors and hardware, tracking algorithms compute the relative location of the sun in the sky throughout
the day. Then, a controller orients the panel to point at the sun, illustrated in Figure 1. The goal is to minimize the angle of incidence
between incoming solar radiant energy and the grid of photovoltaic cells, as in Eke and Senturk [6] and Benghanem [1].

Prior work has consistently demonstrated that panels using a tracking system increase the total energy by a substantial amount: Eke
and Senturk [6] report that a dual-axis tracker yielded 71 kW/h, compared to a fixed panel’s yield of 52 kW/h on the same day. They
also report energy harvesting gains of dual-axis tracking systems over fixed systems varying from 15% to 40%, depending on the time
of year. Mousazadeh et al. [18] report that gains from tracking vary between 0% and 100%, while Clifford and Eastwood [3] report
a gain of 23% due to tracking in simulation. Solar tracking and control results in non-trivial benefits in solar photovoltaic systems.

Recent work in solar tracking has focused on algorithms that are sufficiently accurate to inform control of panels, building on the
early work of Spencer [24]. The algorithm introduced by Reda and Andreas [21] computes the sun’s location in the sky within
±0.0003◦ of accuracy, achieving the highest degree of accuracy of any known algorithm, but is computationally inefficient to the
point of impracticality. Grena [8] overcomes these inefficiencies with a tracking algorithm that requires an order of magnitude fewer
calculations while still achieving 0.0027◦ of accuracy.

However, prior literature suggests that a variety of factors contribute to the performance of a panel [12], and thus, pointing directly at
the sun is not always optimal behavior. Specifically, the total solar irradiance falling on a panel is a combination of direct, reflective,
and diffuse irradiance [1]. The diffuse irradiance typically varies between 15% and 55% of direct irradiance depending on factors
like cloud coverage and the time of day [19], while a case study by the Cold Climate Housing Research Center in Fairbanks, Alaska
reports reflective irradiance varying from 5% to 25% of direct irradiance [4]. The reflective irradiance depends on the percentage of
irradiance reflected off the surrounding ground surface: Typical values for this percentage given by McEvoy et al. [17] vary between
17% (soil), 55% (concrete), and 90% (snow). Additionally, changing weather conditions can affect the optimal panel orientation [11].
Thus, optimal performance may involve prioritizing reflective or diffuse irradiance when direct sunlight is unavailable.

There are two additional shortcomings to the classical tracking approach. First, tracking algorithms take as input a variety of data that
require additional hardware such as a barometer, thermometer, or GPS [9], increasing the total cost and system complexity. Second,
tracking algorithms are only accurate for a fixed window of time: The algorithm of Grena [8] is noted as accurate until 2023 AD (due
to the subtle movements of the earth and sun), while the algorithms in Grena [9] are reported as accurate until 2110 AD.

In this work, we advocate for the use of RL to optimize solar panel performance. A learned solar panel controller can account for
weather change, cloud coverage, and diverse reflective indices of surroundings, offering an efficient yet adaptive solution that can
optimize for the given availability of each type of solar irradiance without the need for complex hardware, regardless of the location
or year. In this work, we advance solar panel control as an application area for RL, including a high fidelity simulation built using
recently introduced models of solar irradiance, and validate of the utility of RL approaches for solar panel control.

1.1 Background

The amount of solar radiant energy contacting a surface on the earth’s surface (per unit area, per unit time) is called irradiance [7].
We denote the total irradiance hitting a panel as Rt, which, per the models developed by Kamali et al. [10], is approximated by the
sum of the direct irradiance, Rd, diffuse irradiance (light from the sky), Rf , and reflective irradiance, Rr (reflected off the ground or
other surfaces). Each of these components is modified by a scalar, θd, θf , θr ∈ [0, 1], denoting the effect of the angle of incidence
between oncoming solar rays and the panel’s orientation, yielding the total:

Rt = Rdθd +Rfθf +Rrθr (1)

Figure 1: In the solar panel control problem, the panel changes orientation over time to maximize exposure to solar radiant energy.
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Additionally, the components Rd and Rf are known to be effected by cloud coverage [13, 20, 26]. We attend to these details in
describing our simulation in Section 2. A controller for a solar panel then seeks to maximize total irradiance, Rt, hitting the panel’s
surface. In the case of solar trackers, a running assumption is that it is near optimal to orient the panel such that its normal vector is
pointing at the sun, and thus arises the necessity for accurate solar tracking algorithms. There are many types of tracking methods,
only a few of which we discuss in this work; for an in depth survey of solar tracking techniques, see Mousazadeh et al. [18].

2 Simulation

We introduce a high fidelity simulated environment to validate the use of RL for solar panel control. There are four basic stages to the
simulation: (1) computing the sun’s location in the sky, relative to the panel, (2) computing Rd, Rf , and Rr, (3) computing θd, θf ,
and θr, and (4) generating percepts.

(1) Sun’s location in the sky: For a given latitude, longitude, year, month, day, and time, we simulate the relative positions of the
sun to the specified location on earth. Our simulation computes the sun’s altitude α (angle: degrees above the horizon) and azimuth
Γ (angle: clockwise degrees along the horizon relative to North) using the accurate tracker algorithm from Reda and Andreas [21]
implemented in the open source library pysolar.1 Due to space constraints, we do not give the full computation. Note, however,
that a quicker approximation (also available in pysolar) is given by:

α = arcsin(cosL cos δ cosH + sinL sin δ), Γ = arcsin

(
cos δ sinH

cosα

)
. (2)

(2) ComputingRd, Rf , RrRd, Rf , RrRd, Rf , Rr: Given the sun’s altitude α and azimuth Γ, we compute theRd, Rf , andRd from the models of Threlkeld
and Jordan [25] and Masters [16].

Rd = Ae−km, Rf = C ·Rd, Rr = ρRd(sinα+ C), (3)

where A is the apparent extraterrestrial flux, k is the optical depth, m is the air mass ratio, ρ ∈ [0, 1) is a reflective index (albedo)
denoting how reflective the ground is, and C is a sky diffusion factor, each given by the approximations:

m =
1

sinα
, A = 1160 + sin (0.99n− 271) , k = 0.174 + 0.035 sin (0.99n− 99) , C = 0.095 + 0.04 sin (0.99n− 99) , (4)

where n ∈ [1 : 365] is a day of the year.

(3) Computing θd, θf , θrθd, θf , θrθd, θf , θr: Given the two angles describing the panel’s orientation (ν: north-south tilt, ω: east-west tilt), we simulate
the amount of total irradiance actually hitting the panel’s surface. The models of Masters [16] compute θt in terms of the cos-similarity
between the panel’s normal vector, ~p, and the sun’s vector, ~s, (with the panel as the origin):

~p = [sin(ν) cos(ω) cos(ν) cos(ω) cos(ν) cos(ω)] , ~s = [sin(π − Γ) cos(α) cos(π − Γ) cos(α) sin(α)] . (5)

We then compute θd as follows:

θd =
~p · ~s
||~p||||~s||

= sin(ν) cos(ω) sin(π − Γ) cos(α) + cos(ν) cos(ω) cos(π − Γ) cos(α) + cos(ν) cos(ω) sin(α). (6)

The diffuse irradiance incident angle θf is given by a simple approximation—the solar collector is exposed to the fraction of the sky
it points to—while θr is given by the fraction of the ground the collector points to:

θf =
cos ν + cosω

2
, θr =

2− cos ν − cosω

2
. (7)

(4) Generating Percepts: The final step in the simulation is to generate percepts (state variables) for the learning algorithms. In
future work, we plan to control real solar panels with RL outside of simulation. For the real system we will equip each solar panel
with a fish eye monocular camera to provide images of the sky as input for the RL algorithm. To approximate the real setting, our
simulated environment supports percepts of three kinds:

1. The panel’s orientation and two angles representing the sun’s position in the sky relative to the panel (four state variables).
2. A 16× 16 synthesized grayscale image of the clear sky (256 state variables, each in the range [0, 1]).
3. A 16× 16 synthesized grayscale image of the sky with simulated cloud cover (256 state variables, each in the range [0, 1]).

For both image percepts, the perceived fraction of the sky changes as the panel moves to approximate having the camera mounted to
the panel. In generating images, we ignore refractive effects on irradiance due to temperature and pressure.

Cloud cover is generated as Gaussian blobs in the synthesized images. The cloud conditions are randomized each morning at 4am,
with the clouds moving from the left side of the image to the right (across the sky) throughout the course of the day (1 pixel per hour).

1pysolar.org
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(a) Sample Sky Percepts (b) Sample Sky + Cloud Percepts

Figure 2: Example percepts given to the RL agent with no clouds (left) and simulated cloud coverage (right).

Each day at 4am, we generate between 1 and 5 clouds uniformly at random, with each cloud modeled as a Multivariate Gaussian.
Parameters are randomized as:

µ ∼ [Unif(0 : N) Unif(0 : N)] , Σ ∼
[

Unif(2 : 6) 0.2
0.2 Unif(2 : 4)

]
. (8)

Where Unif(x : y) denotes a uniform random sample from the natural interval [x : y], and N is the dimension of the image (which
we set to 16). The intensity of the cloud corresponds to the value of the Gaussian. Surprisingly, studies show that diffuse irradiance
can be either magnified [23] or decreased [20] by cloud cover, depending on conditions. In light of these findings, our main interest
in experimenting with clouds is to evaluate RL approaches with a rich state space, so we choose not to alter the diffuse irradiance.
Direct irradiance (Rd), however, is almost always decreased by cloud cover. Thus, if a cloud sits between the panel and the sun, we
reduce the direct irradiance hitting the panel’s surface proportional to the cloud’s intensity.

3 Experiments

In each experiment, evaluation is done online, in that the agent is learning while acting to better parallel the nature of
solar panel control. Our simulation is wrapped in an MDP, where the action space consists of five actions: A =
{tilt N, tilt E, tilt S, tilt W, nothing}. Executing the nothing action keeps the panel orientation fixed, while
the other four each shift the panel 2◦ in their respective directions. Each decision step is equivalent to three minutes of time passing.

We experiment with two simple learning agents: Q-Learning and SARSA, each with a linear function approximator to estimate
Q∗. To test the significance of modeling the sequential aspects of the problem, we also conduct experiments with Q-Learning with
γ = 0 (so it only maximizes immediate return) and LinUCB [14], a standard approach to non-sequential Contextual Bandits. We set
exploration parameter ε0 = 0.3 and learning rate η0 = 0.1 with a standard annealing schedule, adopted from Darken and Moody [5]:

ηt =
η0(

1.0 + t
500

) , εt =
ε0(

1.0 + t
500

)
Where t is a time step, and the update is performed every 500 time steps. For q-lin and sarsa-lin we set γ = 0.99 to emphasize
the long term consequences of behavior, contrasted with LinUCB and a short-sighted version of Q-Learning with γ = 0 (q-lin,
γ = 0). Our benchmark algorithm is Algorithm 2 from Grena [9], an efficient but accurate solar tracking algorithm, coupled with
a controller that always points perfectly at the tracker’s estimate of the sun’s location. We also provide results for a fixed panel to
illustrate the importance of tracking (fixed), and a highly idealized controller that computes the perfect orientation at each decision
step to illustrate an upper bound on possible performance (optimal). All of our code for running experiments and for reproducing
results is publicly available.2

Figure 3 illustrates the cumulative irradiance exposed to each panel in the Australia experiments (top) and the Iceland experiments
(bottom). Notably, with the simple percept of the true sun angles, all of the learning algorithms outperform the baseline tracker and
fixed panel in Australia, while in Iceland, lin-ucb performs worse than the fixed panel for the first two percepts. When just the
image is provided in Australia, lin-ucb achieves by far the best performance; we hypothesize that this is due to LinUCB’s informed
approach to exploration compared to the ε-greedy used by sarsa-lin and both ql-lin and ql-lin, γ = 0. Additionally,
when just the sun is in the image, there is little incentive to forecast expected future reward beyond the immediate next step, which may
explain the success of lin-ucb. This is further corroborated by the fact that ql-lin, γ = 0 does quite well in the experiment as
well. Conversely, we see that lin-ucb continues to struggle in Iceland. When clouds are present, lin-ucb performs comparably
to the other learners. The cloudy image percepts pose a challenging RL problem, but still we see that the simple approaches achieve
similar performance as the grena-tracker, and note the substantial room for improvement from further training or more complex
learners. In Iceland, the results are largely the same as Australia, though we note that the grena-tracker does better.

In all cases, we note that there is room for improvement, suggesting that more sophisticated approaches may have more success on
real panels than current techniques. In all our simulations, the grena-tracker consistently outperforms the fixed-panel by
around 25%, consistent with previously published results [6, 18, 3].

2https://github.com/david-abel/solar_panels_rl/experiments
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(a) True Sun Angles (b) Bitmap of the Sky (c) Bitmap of the Cloudy Sky

(d) True Sun Angles (e) Bitmap of the Sky (f) Bitmap of the Cloudy Sky

Figure 3: Cumulative irradiance falling on the panel’s surface given different percepts over four days in Mildura, Australia in July of
2015 (top) and eight days in Reykjavik, Iceland in July of 2020 (bottom).
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