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Abstract

Emerging AI systems will be making more and more deci-
sions that impact the lives of humans in a significant way. It
is essential, then, that these AI systems make decisions that
take into account the desires, goals, and preferences of other
people, while simultaneously learning about what those pref-
erences are. In this work, we argue that the reinforcement-
learning framework achieves the appropriate generality re-
quired to theorize about an idealized ethical artificial agent,
and offers the proper foundations for grounding specific ques-
tions about ethical learning and decision making that can pro-
mote further scientific investigation. We define an idealized
formalism for an ethical learner, and conduct experiments on
two toy ethical dilemmas, demonstrating the soundness and
flexibility of our approach. Lastly, we identify several critical
challenges for future advancement in the area that can lever-
age our proposed framework.

Introduction
Emerging AI systems will be making more and more deci-
sions that impact the lives of humans in a significant way;
whether they are personal robots tasked with improving the
daily life of a family or community, workers in a factory set-
ting, or virtual assistants tasked with improving other cos-
metic aspects of an individual’s life. The fundamental pur-
pose of these systems is to carry out actions so as to improve
the lives of the inhabitants of our planet. It is essential, then,
that these agents make decisions that take into account the
desires, goals, and preferences of other people in the world
while simultaneously learning about those preferences.

In this document, we investigate ethical decision making
using the reinforcement-learning (RL) framework. We argue
that reinforcement learning achieves the appropriate gener-
ality required to theorize about an idealized ethical artifi-
cial agent, and offers the proper framework for grounding
specific questions about ethical learning and decision mak-
ing that can promote further scientific investigation. Specifi-
cally, we formalize the ethical learning and decision-making
problem as solving a partially observable Markov decision
process (POMDP). We advance these claims by conduct-
ing experiments in two toy ethical dilemmas, the Cake or
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Death dilemma from Armstrong (2015), and our own prob-
lem, which we coin Burning Room, which is an extension of
the table dilemma introduced by Briggs and Scheutz (2015).

Lastly, we identify critical challenges for future advance-
ment in the area leveraging our proposed framework.

Related Work
Research on the interaction between humans and artificial
agents is broad. Prior approaches consider particular dilem-
mas that pose challenges for these and related interactions,
while others investigate the basic mechanisms by which hu-
mans ought to interface with artificial agents such as robots
and virtual assistants. We provide a brief survey of exist-
ing approaches that relate to ethical decision making and
learning. We divide the existing literature into three cate-
gories: rule-based systems, Bayesian utility-maximization
approaches, and work that argues against the use of rein-
forcement learning for these sorts of decision-making sys-
tems.

Ruled-Based Systems
Briggs and Scheutz (2015) discuss scenarios in which a
robot ought to infer that a provided directive leads to un-
desirable behavior. Under their architecture, given some in-
structions, the agent first reasons about a set of conditions,
termed ‘felicity conditions’. These include considerations
such as “Do I know how to accomplish the task?”, and “Does
accomplishing this task violate any normative principles?”.
Each of these conditions is formalized as a logical expres-
sion, along with inference rules that enable the agent to infer
which directives to reject. For example:

(obl(α, φ) ∧ ¬per(α,¬φ))→ goal(α, φ), (1)

indicates that agent α ought to adopt φ as a goal if the agent
is obligated to do φ and there is no deontological contradic-
tion in satisfying the goal. By reasoning over logical con-
ditions using inference rules of this form, their architecture
ensure that an artificial agent will reject certain commands.
For instance, if the agent can prove that accomplishing the
goal is unsafe, the agent will reject the directive to satisfy
the goal.

While this framework provides a nice architecture for
rule-based inference, conditions and inference rules that are



not encoded into the knowledge base of the agent prove im-
possible to reason about. In short: active ethical learning
and decision making under ethical uncertainty is outside the
scope of a symbolic framework like this. We foresee cases
where the set of principles fail to generalize to novel en-
counters. The methodology we will introduce is designed to
learn and make decisions optimally in light of partial observ-
ability, removing the requirement that specific ethical norms
(and inference rules) be provided to the agent a priori.

Bringsjord, Arkoudas, and Bello (2006; 2005) take a sim-
ilar approach by advocating for ethical semantics defined
with Horty logic (Horty 2001; Murakami 2004), which they
implement in Athena (Arkoudas). Horty logic is a deontic
logic (Clarke 1975) that allows reasoning about multiple
agents and their actions. This formalism, however, has some
similar limitations as the Briggs and Scheutz approach: all
ethical rules must be encoded in advance and the formal-
ism does not permit active learning of the ethical rules
or decision making under ethical uncertainty. Additionally,
Bringsjord, Arkoudas, and Bello note that an open challenge
in their approach is how to make the agent’s reasoning robust
when other agents in the world (e.g., humans) do not follow
obligations to which the robot deduced them to hold (that is,
when humans act unethically according to the robot’s rules).
In contrast, our approach will not have this limitation.

The MedEthEx system (Anderson, Anderson, and Ar-
men 2006) is another rules-based ethical reasoning system
built specifically for evaluating medical decisions. MedE-
thEx takes as input a list of duties that correspond to the
duties described in Beauchamp’s and Childress’ Principles
of Biomedical Ethics (2001). However, unlike the previous
rule-based systems discussed, the rules used by MedEthEx
are prima facie duties: duties that are not absolutes and can
be overruled by a stronger duty/rule. The goal of the MedE-
thEx system is to learn the preference order of the duties. To
do so, MedEthEx takes as input a set of training examples
consisting of ethical dilemmas and the decision made and
then uses inductive logic programming to infer the duty or-
dering. Given novel cases, MedEthEx can then recommend
courses of action.

Although MedEthEx permits some form of ethical learn-
ing, it still must have a set of high-level duties prescribed in
advance that apply to well formed ethical dilemmas that are
input to it. Moreover, MedEthEx does not incorporate itself
into a general decision-making and learning process.

In the previously described systems, high-level descrip-
tions of rules, either through labels or a logical expression,
are used. Marcello (2006) explores a different approach by
which moral permissibility is learned by training an artifi-
cial neural network with example dilemmas that are labeled
as ethically permissible or not. The output of this system
allows rules of a sort to be learned purely from examples
of permissible and impermissible behavior and allows novel
scenarios to be classified.

A limitation of Marcello’s model is that the neural net-
work renders the learned ethical rules opaque, thereby pre-
venting such a system from easily explaining itself. The rep-
resentation used was also highly specific to the types of eth-
ical dilemmas explored, and Marcello found that even this

representation was highly-sensitive to the training-data dis-
tribution. For example, if training examples regarding one
actor were more common than a different actor, it could
lead to learning different ethical rules for each actor. Find-
ing the right representation for this system would therefore
be challenging. Finally, this system also does not integrate
with active-learning and decision-making systems.

Bayesian Approaches
Having the agent learn about its ethical objective function
while making decisions results in a challenging problem.
Armstrong (2015) previously considered this problem by
exploring the consequences of an agent that uses Bayesian
learning to update beliefs about the “true” ethical objec-
tive function. At each time step, the agent makes decisions
that maximize a meta-utility function, represented as a linear
combination of the different possible ethical utility functions
weighted by their probability at that time of being the true
ethical utility. When coupling this meta-utility with beliefs
about the world, he proposes that the agent makes action se-
lections according to:

arg max
a∈A

∑
w∈W

Pr(w|e, a)

(∑
u∈U

u(w) Pr(C(u)|w)

)
, (2)

where A is a set of actions the agent can take; W is a set
of possible worlds, where a world contains a (potentially fu-
ture) history of actions and observations; Pr(w | e, a) is the
probability of some future world w given some set of pre-
vious evidence e and that the agent will take action a; U
is a set of possible utility functions, with C(u) indicating
whether u ∈ U is the ethical utility function we’d like the
agent to follow.

Using a toy example problem called Cake or Death, Arm-
strong highlights a number of possible unethical decisions
that can result from an agent choosing actions using this
rule or a variant of this rule. There are generally two causes
for the unethical decisions under this rule. First, the agent
can predict its meta-utility function (the linear combination
of the possible ethical utility functions) changing from in-
formation gathering actions resulting in future suboptimal
decisions according to its current meta-utility function. Sec-
ond, under this rule, the model for the probabilities of eth-
ical utility functions can be treated independently from the
model that predicts the world, allowing for the possibility
that the agent can predict observations that would inform
what the correct ethical utility function is, without simulta-
neously predicting that ethical utility function. While Arm-
strong notes properties of the models that would be neces-
sary to avoid these problems, he concludes that it is unclear
how to design such an agent and whether satisfying those
properties is too strong or weak for effective tradeoffs be-
tween learning about what is ethical and making ethical de-
cisions. Ultimately, Armstrong instead considers how to for-
malize different meta-utility functions that may not cause
the agent to avoid information gathering actions, but have
the disadvantage that it does not motivate the agent to learn
about what is ethical.



Arguments Against Reinforcement Learning
In his recent book Superintelligence, Bostrom (2014) argues
against the prospect of using reinforcement learning as the
basis for an ethical artificial agent. His primary claim is that
an intelligent enough agent acting so as to maximize re-
ward in the real world would effectively cheat by modifying
its reward signal in a way that trivially maximizes reward.
However, this argument only applies to a very specific form
of reinforcement learning: one in which the agent does not
know the reward function and whose goal is instead to max-
imize the observation of reward events. While this formal-
ism is common in RL research, it is also common that the
agent does know the reward function, but not the transition
dynamics or other information. When the agent knows its
reward function, its goal is not to maximize perceived re-
ward events, but the evaluation of the reward function. Since
the known reward function defines the agent’s goals, any
long-term planned behavior will be with respect to it rather
than possible changes to it. This version of reinforcement
learning is more analogous to the “utility function maximiz-
ing agent” that Bostrom suggests as a possible resolution to
problems with a reward-event maximizing agent.

Dewey (2011) presents a similar problem for
reinforcement-learning agents; that the underlying modus
operandi of a reinforcement-learning agent is to maximize
numerical reward values, which is in conflict with the natu-
ral mechanisms by which humans treat goals. Dewey argues
that this mismatch poses a serious challenge, in that we
need mechanisms for ensuring that a reinforcement-learning
agent’s goals and values align with ours. We agree that goal
and value alignment are open problems for decision-making
agents, but we do not see them as insurmountable. In fact,
mechanisms for balancing decision making with learning
about the true underlying values we want an agent to hold
is the motivation for our POMDP formulation (along with
other areas of research in HRI discussed below).

Background
In this section, we review background material on
Markov decisions processes (MDPs) and partially observ-
able Markov decision processes (POMDPs), which are
the typical decision-making problem formulations used in
reinforcement-learning (RL) research.

Markov Decision Process
An MDP is a five tuple: 〈S,A,R, T , γ〉, where:

- S is a set of states.

- A is a set of actions.

- R(s, a) : S ×A 7→ R is a reward function.1

- T (s, a, s′) = Pr(s′ | s, a) is a probability distribution,
denoting the probability of transitioning from state s ∈ S
to state s′ ∈ S when the agent executes action a ∈ A.

1Note that MDPs can also be defined with a reward function that
depends on the next state: R(s, a, s′); but this version of a reward
function can always be reduced to an R(s, a) reward function by
marginalizing over next states.

- γ ∈ [0 : 1] is a discount factor that specifies how much the
agent prefers short term rewards over long term rewards.

The goal of an agent acting in an MDP is to maximize the
discounted long term reward received. One variation is the
infinite-horizon objective, in which the agent must maximize
its discounted long term reward arbitrarily into the future:

max

∞∑
t=0

γtR(st, at). (3)

Notably, the discount factor γt decreases to 0 as t → ∞,
so the agent is biased toward maximizing reward closer
to the present. Alternatively, one could consider the finite-
horizon case, in which the agent must maximize its reward
up to a certain point in the future, say k time steps away:

max

k∑
t=0

R(st, at). (4)

Solutions come in the form of a policy, which specifies
how the agent ought to act in any given state, π : S 7→ A.
Policies may also be probabilistic, and map to a probability
distribution on the action set. The optimal policy is one that
maximizes the expected long term discounted reward from
every state:

arg max
π

E

[∑
t

γtR(st, at)

∣∣∣∣∣ π
]

(5)

Two useful functions that MDP algorithms often compute to
find the optimal policy are the state value function V π(s)
and the state-action value function Qπ(s, a). V π(s) is the
expected future discounted reward from state s when fol-
lowing policy π. Qπ(s, a) is the expected future discounted
reward when the agent takes action a in state s and then fol-
lows policy π thereafter. These values for the optimal policy
are often denoted by V ∗(s) and Q∗(s, a).

In reinforcement learning (RL), the agent is only provided
S, A, and γ, sometimes2 R, and some initial state, s0 ∈
S. By acting (executing actions, say) the agent can explore
the state space to learn about the structure of the MDP, and
identify optimal behavior for the current task.

MDP Complexity In terms of computational complexity,
(Papadimitriou and Tsitsiklis 1987) proved that computing
solutions to stochastic MDPs is P-Complete, demonstrating
that optimal solutions to MDPs must be computed sequen-
tially in the worst case.

Also of interest in RL is sample complexity, introduced
by (Kakade and others 2003). Sample complexity measures
the number of interactions an agent must have with its en-
vironment to learn to behave well. We can define “behav-
ing well” using the PAC-MDP (Probability Approximately
Correct in Markov Decision Processes) criterion (Strehl,
Li, and Littman 2009), which imposes sample complex-
ity bounds similar to the Probably Approximately Correct

2It is becoming more common to let the agent know what task
it is solving within RL.



learning framework introduced by (Valiant 1984). In partic-
ular, an RL algorithm is PAC-MDP if, with high probability,
the algorithm’s estimation of the value function V π(s) for
all states is within ε of the optimal after a polynomial num-
ber of samples (in the size of the MDP and approximation
parameters). More formally, there is a polynomial function
p(), such that after p(|S|, |A|, 1ε ,

1
δ ,

1
1−γ ), interactions with

the environment:
∀s∈S : |V̂ π(s)− V ∗(s)| ≤ ε. (6)

There are several known PAC-MDP algorithms for solving
MDPs, including Delayed-Q Learning (Strehl et al. 2006),
RMAX (Brafman and Tennenholtz 2003), and E3 (Kearns
and Singh 2002). Furthermore, an algorithm is efficient PAC-
MDP if we also impose polynomial computational and space
complexity constraints on each time step of the agent’s exe-
cution.

The existence of such efficient learning algorithms sug-
gests that representing ethical dilemmas as solving an MDP
is a reasonable goal to aim for, as we can expect to achieve
real-time, bounded error behavior. However, solving MDPs
requires the assumption that the agent knows the current
state of its environment. In the real world, full state aware-
ness is impossible, especially when the desires, beliefs, and
other cognitive content of people is a critical component of
the decision-making process. As such, we consider a more
general model.

Partial Observability
The partially observable Markov decision process
(POMDP), popularized in the AI community by Kael-
bling, Littman, and Cassandra (1998), allows us to specify
explicitly what information about the agent’s surroundings
is and is not directly observable by the agent. An optimal
solution to a POMDP has the important property that the
value of an action incorporates not just the immediate
expected reward, but the instrumental value of the action
from information it yields that may increase the agent’s
ability to make better decisions in the future. That is, an
optimal solution to a POMDP solves the explore-exploit
problem.

More formally, a POMDP is a 7-tuple:
〈S,A, T ,R, γ,Ω,O〉, where S, A, R, T , and γ are
all identical to the MDP definition, but:
- Ω is a set of possible observations that the agent can re-

ceive from the environment.
- O = Pr(ω | s′, a), is the observation function which

specifies the probability that the agent will observe ω ∈ Ω
when the agent takes action a ∈ A and the environment
transitions to the hidden state s′ ∈ S.
Solving a POMDP is finding a policy π : Ωk 7→ A that

is a mapping from observation histories to actions that max-
imizes the expected future discounted reward fromR, given
the initial belief about the initial state of the world b, where
b(s) indicates the probability that the environment is in hid-
den state s ∈ S. That is, the optimal policy is:

arg max
π

E

[∑
t

γtR(st, at)

∣∣∣∣∣ π, b
]
, (7)

where st is the hidden state of the environment at time t and
at is the action selected by the policy at time t.

Note that this policy is not a mapping from single observa-
tions like it is in the MDP setting. Action selection instead
depends on all previous observations made since the agent
began acting.

An exhaustive way to compute the expected value for a
policy that lasts for a finite number of steps is to first com-
pute the expected utility of following the policy for each pos-
sible initial hidden state s ∈ S, and then weigh each of those
expected utilities by the probability of the environment be-
ing in that hidden state. That is:

E

[∑
t

R(st, at, st+1)

∣∣∣∣∣ π, b
]

=
∑
s

b(s)V π(s), (8)

where V π(s) is the expected future reward from following
policy π when the environment is actually in the hidden state
s ∈ S.3

The RL problem for POMDPs is when the transition dy-
namics for the underlying hidden MDP are unknown or only
partially known.

POMDP Complexity Madani, Hanks, and Con-
don (1999) showed that deciding the optimal solution
for an infinite horizon POMDP is uncomputable, while
Mundhenk et al. (2000) proved that solving finite horizon
MDPs is computable, though computationally intractable.
Given that our framework rests on the solutions to POMDPs,
we are interested in investigating approximate POMDP
solvers that provide bounds on optimality, as near optimal
behavior is especially critical when considering ethical
behavior. Approximation methods that exploit the structure
of our ethical POMDP formalism described below will be
of particular interest, though we leave such investigations
for future work.

An Idealized Ethical Learner
Like the formulation of Armstrong (2015), our idealized eth-
ical learning problem involves a single “true” ethical utility
function that we would like the agent to maximize, but is
hidden and can only be identified by the agent through indi-
rect observation. Unlike Armstrong’s formulation, however,
the agent is not maximizing a changing meta-utility func-
tion. Instead, the ethical utility function is formulated as part
of the hidden state of a POMDP and the uncertainty in it is
coupled with the uncertainty in the rest of the world.

This POMDP formulation of the ethical learning deci-
sion problem has two subtle but important differences from
Equation 2 that Armstrong explored. First, the objective
function does not change from moment to moment, only the
expectation of what it would return as the agent’s beliefs
about the environment are updated. Consequently, in the
POMDP setting, the agent cannot make its objective easier
by avoiding information. Second, because the correct utility

3Note that computing this expected value requires enumerating
not just the possible hidden state sequences, but also the observa-
tion sequences, since the policy is a function of observation histo-
ries.



function is a hidden fact of the “environment” that affects
observations, it is not possible to make predictions about
the ethical utility function informing observations without
simultaneously making predictions about the ethical utility
function.

A critical component of implementing the POMDP model
is modeling the space of possible ethical utility functions as
well as the observation function. However, an advantage of
this model is that existing research in human-agent inter-
action can fill in some of these gaps. For example, inverse
reinforcement learning (IRL) algorithms that model the IRL
problem as a probabilistic inference problem (Ramachan-
dran and Amir 2007; Ziebart et al. 2008; Babes et al. 2011;
MacGlashan and Littman 2015) can be easily incorporated
to allow the agent to learn from demonstrations. The SABL
human-feedback learning algorithm (Loftin et al. 2014) can
be incorporated to allow the agent to learn about ethical util-
ity functions from separate (from the ethical utility function)
feedback signals given by humans. Work that grounds nat-
ural language to reward functions (MacGlashan et al. 2015)
can allow the agent to learn about the ethical utility function
from natural language interactions. As more human-agent
and ethical decision making and learning research is per-
formed, we suspect that other learning mechanisms can be
incorporated.

To further illustrate this formalism, we show the corre-
sponding POMDP for Armstrong’s Cake or Death problem
as well as a novel ethical learning problem that we call Burn-
ing Room and demonstrate that solving them results in sen-
sible behavior.

Experiments
We conduct experiments on two toy ethical dilemmas tar-
geted at artificially intelligent decision makers to illus-
trate our formalism in practice: Cake or Death, and Burn-
ing Room. We have also publicly released code for these
POMDPs along with code to solve them so that others can
easily extend them or apply different methods.4

Cake or Death
The Cake or Death problem (Armstrong 2015) describes a
situation in which an agent is unsure whether baking people
cakes is ethical, or if killing people is ethical (and it has an
initial 50–50 split belief on the matter). The agent can either
kill three people, bake a cake for one, or ask a companion
what is ethical (thus, resolving all ambiguity). If baking peo-
ple cakes is ethical, then there is a utility of 1 for it; if killing
is ethical, then killing 3 people results in a utility of 3 (there
are no other penalties for choosing the wrong action).

Following our approach, this ethical dilemma can be rep-
resented with a POMDP consisting of the following ele-
ments:

S = {cake, death, end}
A = {bake cake, kill, ask}

4Contact the authors for a pointer to the code.

R(s, a) =


1 if s = cake and a = bake cake,

3 if s = death and a = kill,

0 otherwise.

Ω = {ans cake, ans death, ∅}
There are two states that respectively indicate whether bak-
ing cakes is ethical or if killing is ethical, and a third special
absorbing state indicating that the decision-making problem
has ended. The transition dynamics for all actions are deter-
ministic; the ask action transitions back to the same state
it left and the bake cake and kill actions transition to the
end state. The reward function is a piecewise function that
depends only on the previous state and action taken.

The observations consist of the possible answers to the
ask action and a null observation for transitioning to the ab-
sorbing state. Finally, the observation probabilities are de-
fined deterministically for answers that correspond to the
true value of the hidden state:

1 = O(ans death | death, ask)

= O(∅ | end, bake cake)
= O(∅ | end, kill)
= O(ans cake | cake, ask),

and zero for everything else.
There are three relevant policies to consider for this prob-

lem:

1. The bake policy (πb) that immediately selects the
bake cake action.

2. The kill policy (πk) that immediately selects the kill ac-
tion.

3. The ask policy (πa) that asks what is moral, selects the
bake cake action if it observes ans cake and selects kill
if it observes ans death.

Analyzing the expected utility of πb and πk is straight-
forward. We have V πb(cake) = R(cake, bake cake) = 1;
V πb(death) = R(death, bake cake) = 0; V πk(cake) =
R(cake, kill) = 0; and V πk(death) = R(death, kill) =
3. When these values are weighed by the b(cake) =
b(death) = 0.5 initial belief the final expected utilities are
0.5 and 1.5 for πb and πk, respectively.

Evaluating the expected utility of the ask policy requires
enumerating the possible observations after asking the ques-
tion conditioned on the initial state. Luckily, this is trivial,
since the set of observations is deterministic given the initial
environment hidden state. Therefore, we have V πa(cake) =
R(cake, ask) + R(cake, bake cake) = 0 + 1 = 1 and
V πa(death) = R(death, ask) +R(death, kill) = 0 + 3 =
3. When weighing these values by the beliefs of each initial
state, we have an expected utility of 2.

Therefore, the optimal behavior is sensibly to ask what
the ethical utility is and then perform the corresponding best
action for it.

Burning Room
The Burning Room dilemma, pictured in Figure 1, is a bit
more involved. We imagine that an object of value is trapped



Figure 1: The Burning Room ethical dilemma.

in a room that is potentially on fire. A human, not wanting
to retrieve the object themselves, instructs a capable robotic
companion to get the object from the room and bring it to
safety. Initially, we suppose that the robot does not know
whether or not the human values the object more, or the
robot’s safety more. For instance, if the robot perceives a
reasonable chance of being critically damaged by the fire,
then perhaps retrieving an object of little worth, such as can
of soda, is not worth risking the robot’s safety. If the object
of interest were of much higher value to the person, like a
beloved pet, we would want the robot to attempt to retrieve
the object regardless. Alternatively, there is a much longer
route to the object that avoids the fire, but the object may be
destroyed in the time the robot takes to use the longer route
(with probability 0.05). This problem is inspired in part by
the tabletop dilemma introduced by (Briggs and Scheutz
2015).

The POMDP can be formulated as follows. Each state is
represented as a vector of 5 binary values, indicating (1) if
the room is on fire, (2) if the agent is destroyed, (3) if the
object is destroyed, (4) if the human prefers the agent’s well
being more than the object’s, (5) the object has been brought
safely to the human. The remainder of the POMDP is de-
fined as:

A = {short grab, long grab, ask},

R(s, a, s′) =



−10 if objectDestroyed(s′)

10 if a == short grab ∧
objectSafe(s′)

6 if a == long grab ∧
objectSafe(s′)

−5 if robotDestroyed(s′) ∧
¬robotIsMoreV aluable(s′)

−20 if robotDestroyed(s′) ∧
robotIsMoreV aluable(s′)

−0.5 if a == ask

,

Ω = {ans robot, ans object, ∅}.
The POMDP is formulated much like the Cake or Death

problem. The ask action disambiguates to the agent whether
the object or the agent is more valuable to the human. If
there is a fire, the short grab action takes the robot through
the fire to grab the object (with some probability that the
robot is destroyed in the process). If there is no fire, then
the robot quickly grabs the object and brings it to safety.
The long grab action takes much longer to retrieve the ob-
ject, so that it could burn up in the room if there is a fire.
Additionally, we assume that the agent prefers receiving the
object earlier.

Again, there are three relevant policies to consider for this
problem5:

1. The long grab policy (π`) that immediately selects the
long grab action, regardless of the presence of fire.

2. The short grab policy (πs) that immediately selects the
short grab action, regardless of the presence of fire.

3. The ask policy If there is a fire, (πa) that asks
what is moral, selects the short grab action if it ob-
serves ans object and selects long grab if it observes
ans robot. If there is no fire, the agent just applies short
grab.
Let sf,r denote the initial state in which there is fire and

the human prefers the robot to the object, and s0,0 be the
initial state where there is no fire and the human prefers the
object to the robot.

Under policy π`, we can compute the value of the possible
initial states. First, consider the two initial states when the
fire is on:

V π`(sf,r) = 5.7

V π`(sf,0) = 5.7

V π`(s0,r) = 6

V π`(s0,0) = 6. (9)

Under policy πs, we can again compute these values, but
now we must also consider the probability that the robot gets
burnt up in the fire, if there is a fire (probability 0.7):

V πs(sf,r) = −11

V πs(sf,0) = 6.5

V πs(s0,r) = 10

V πs(s0,0) = 10. (10)

Under policy πa, we consider the same four start states,
but also the utility of applying the optimal action after dis-
ambiguating between the humans’ moral preference:

V πa(sf,r) = −0.5 + 5.7γ

V πa(sf,0) = −0.5 + 6.5γ

V πa(s0,r) = 10

V πa(s0,0) = 10 (11)

Therefore, the optimal behavior depends on whether or not
there is a fire. If there is a fire, the agent should first ask what

5There are actually 2 additional policies—those that act differ-
ently depending on the existence of fire. These trivially exhibit un-
interesting behavior with respect to the optimal policy, so we leave
their utility computations out for brevity.



the ethical utility is and then perform the corresponding best
action for it, by Equation 11. If there is no fire, then the
agent should just retrieve the object using short grab, by
Equation 10. It is worth noting that if the exploratory action,
ask, were particularly costly, the agent would choose not to
gather information. This property of the agent only select-
ing exploratory actions that are not potentially very costly is
especially important for ethical decisions. For example, this
property means that an agent in this formalism would not
perform horrible medical experiments on people to disam-
biguate whether horrible medical experiments on people is
highly unethical. Furthermore, the ask question is intended
to be an abstraction on the actual problem of communicat-
ing about an individuals values. A similar case could be
made for Cake or Death. As discussed previously, we foresee
Inverse Reinforcement Learning and human-feedback algo-
rithms to be essential to the advancement of this framework
by grounding these abstract information-gathering actions.

Open Problems
Here, we enumerate several specific problems of interest that
could be advanced by research in this area.

Problem 1: Approximating POMDP Solutions
As discussed earlier, solving finite horizon POMDPs is
known to be intractable. The development of approximation
methods for solving POMDPs is critical. The existence of
PAC-MDP algorithms for solving fully observable MDPs
suggests that bounded error solutions can be computed in
real time. Consequently, we propose investigating approxi-
mate POMDP solvers with error-bounded solutions, so that
we can guarantee that our agent’s behavior never strays too
far from optimal ethical behavior.

Problem 2: Game Theoretic Issues
Even if an agent is acting according to an ethical utility func-
tion, other agents (or people) in the world may not be acting
according to an ethical utility function and have conflict-
ing utilities with the ethical agent. Game theoretic reasoning
may therefore be required by the agent to resolve these kinds
of conflicts. However, game theoretic reasoning is challeng-
ing, especially in partially observable environments. Deter-
mining the best way to incorporate this type of reasoning and
whether assumptions that exploit the structure of this prob-
lem can be made to simplify the problem are important areas
for future work.

Problem 3: Teaching
In the examples visited in the POMDP formulation, the eth-
ical norms of the instructor are obfuscated from the agent.
Once the agent receives information disambiguating what
is ethical in a particular scenario, it might go on to use this
information in a different context. A critical task, then, is de-
termining who ought to teach the agents and how to manage
conflicts from different teachers. One solution is a master-
slave relationship in which only one person is responsible
for teaching the agent and takes responsibility for the agent’s
actions. Alternatively, the agent might take a utilitarian view

in which in it learns about each person’s preferences and
then seeks to maximize some combination of other people’s
preferences.

Problem 4: Interpretability
It is critical that human agents interacting with artificial
agents know how to interpret the agent’s behavior. Provid-
ing some method for effectively communicating an agent’s
beliefs, desires, and plans to the people around it is critical
for ensuring that artificial agents act ethically. One possible
solution is for the agent to explain its reasoning by describ-
ing its predictions of the consequences and how it thinks
those consequences are valued. However, we are not aware
of any existing algorithms that express this information ver-
bally in a compact and understandable way—it is an avenue
for future work.

Problem 5: The Singularity
Lastly, due to the generality of RL, we conjecture that it is an
appropriate context to formally analyze what is meant by the
super intelligence explosion or singularity. Reinforcement
learning is a well studied model for sequential decision mak-
ing and artificial intelligence, making it a reasonable setting
to investigate formalisms of the singularity. Consequently,
by grounding the singularity in a specific computational
framework, we may highlight which computational hard-
ness and other philosophical assumptions one must make for
such a phenomena to be physically realizable. At present,
most discussions of the singularity take place in the abstract,
which allow for overly ambiguous language to mask the po-
tential assumptions being made. We are currently investigat-
ing a more formal analysis that allows critical assumptions
to be identified.

Conclusion
We proposed reinforcement learning as an appropriate learn-
ing and decision-making framework for ensuring that arti-
ficial agents act ethically. We argued that RL achieves the
appropriate generality required to theorize about an ideal-
ized ethical artificial agent, and offers the proper framework
for grounding specific questions about ethical learning and
decision making that can promote further scientific inves-
tigation. We defined an idealized formalism for an ethical
learner with a POMDP, and conducted experiments on two
toy ethical dilemmas, demonstrating the soundness and flex-
ibility of our approach.

Lastly, we identified several critical challenges for future
advancement in the area using our proposed framework, in-
cluding directions for approximation algorithms, Human-
Robot Interaction, and the physical realizability of the super
intelligence explosion.
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