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Abstract

Conducting reinforcement-learning experiments can be a complex and timely pro-
cess. A full experimental pipeline will typically consist of a simulation of an en-
vironment, an implementation of one or many learning algorithms, a variety of
additional components designed to facilitate the agent-environment interplay, and
any requisite analysis, plotting, and logging thereof. In light of this complexity,
this paper introduces simple_r1!, a new open source library for carrying out rein-
forcement learning experiments in Python 2 and 3 with a focus on simplicity. The
goal of simple_r1l is to support seamless, reproducible methods for running rein-
forcement learning experiments. This paper gives an overview of the core design
philosophy of the package, how it differs from existing libraries, and showcases
its central features.
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Figure 1: The core functionality of simple_rl: Create agents and an MDP, then run and plot their
resulting interactions. Running an experiment also creates an experiment log (stored as a JSON file),
which can be used to rerun the exact same experiment, thereby facilitating simple reproduction of
results. All practitioners need to do, in theory, is share a copy of the experiment file to someone with
the library to ensure result reproduction.

1 Introduction

Reinforcement learning (RL) has recently soared in popularity due in large part to recent success
in challenging domains, including learning to play Atari games from image input [29], beating the
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from simple_rl.agents import QLearningAgent, RandomAgent
from simple_rl.tasks import GridWorldMDP
from simple_rl.run_experiments import run_agents_on_mdp

mdp = GridWorldMDP(width=4, height=3, init_loc=(1, 1), goal_locs=[(4, 3)])

ql_agent = QLearningAgent (actions=mdp.get_actions())
rand_agent = RandomAgent (actions=mdp.get_actions())

run_agents_on_mdp([ql_agent, rand_agent], mdp, instances=5, episodes=50,
steps=10)

Figure 2: Example code for running a basic experiment. First, define a grid-world MDP (line 6),
then make our agents (line 9-10), and then run the experiment (line 13). Running the above will
generate the plot shown in Figure 4.

world champion in Go [35], and robotic control from high dimensional sensors [22]. In concert with
the field’s growth, experiments have become more complex, leading to new challenges for empir-
ical evaluation of RL methods. Recent work by Henderson et al. [17] highlighted many of the is-
sues involved with handling this new complexity, raising concerns about emerging RL experimental
practices. Additionally, Python has become a prominent programming language used by machine-
learning researchers due to the availability of powerful deep learning libraries like PyTorch [31] and
tensorflow [1], along with scipy [20] and numpy [30].

To accommodate this growth, there is a need for a simple, lightweight library that supports quick
execution and analysis of RL experiments in Python. Certainly, many libraries already fulfill this
need for many uses cases—-as will be discussed in Section 2, many effective RL libraries for Python
already exist. However, the design philosophy and ultimate end user of these packages is distinct
from those targeted by simple_r1: those users who seek to quickly run simple experiments, look at
a plot that summarizes results, and allow for the quick sharing and reproduction of these findings.

The core design principle of simple_rl is that of simplicity, per its name. The library is stripped
down to the bare necessities required to run basic RL experiments. The focus of the library is on
traditional, tabular domains, though it does have the capacity to cooperate with high-dimensional
environments like those offered by the OpenAl Gym [6]. The assumed objective of a practitioner
using the library is to define (1) an RL agent (or collection of agents), (2) an environment (an
MDP, POMDP, or similar Markov model), (3) let the agent(s) interact with the environment, and
(4) view and analyze the results of this interaction. This basic pipeline serves as the “end-game” of
simple_rl, and dictates much of the design and its core features. A block diagram of this process
is presented in Figure 1: run an experiment, see the results, and reproduce these results according
to an auto-generated JSON file logging the experimental details. The actual code of the experiment
run is shown in Figure 2: in around five lines, we define a Q-Learning instance, a random actor, and
a simple grid-world domain, and let these agents interact with the environment for a set number of
instances. As mentioned, running this code produces both a JSON file tracking the experiment that
can be used (or shared) to run the same experiment again, and regenerate the plot seen in Figure 4a.

2 Relation To Other Libraries

Many excellent libraries already exist in Python for carrying out RL experiments. What separates
simple_rl? As the name suggests, its distinguishing feature is its emphasis on simplicity, which
also brings a shortage of certain features. We here describe the objectives of other RL libraries in
Python, and briefly cover what some have implemented in case those are a better fit for the needs of
different programmers.



2.1 RLPy

RLPy offers a well documented, expansive library for RL and planning experiments in Python 2 [16].
The library includes a similar overall structure to that of simple_rl: the core entities are agents,
environments, experiments, policies, and representations. The main focus of RLPy is on value-
function approximation, but the library also offers several MDP solvers in the form of the usual
dynamic programming algorithms like value iteration [4] and policy iteration [19]. Notably, the
library also includes a large number of canonical RL tasks, including Mountain Car, Acrobot, Puddle
World, Swimmer, and Cart Pole.

Get it here: https://github.com/rlpy/rlpy

2.2 mushroom

Mushroom is a new library aimed at simplifying RL experimentation with OpenAl gym and tensor-
flow, but also offers support for traditional tabular experiments [13]. Mushroom offers implemen-
tations of many recent Deep RL algorithms, including DQN [29], Stochastic Actor-Critic [12], and
a template for Policy Gradient algorithms. All of its neural network code is based on tensorflow.
Additionally, Mushroom comes with noteworthy RL tasks like Mountain Car, Inverted Pendulum,
and a classic Linear-Quadratic Regulator control task.

Get it here: https://github.com/AIRLab-POLIMI/mushroom

2.3 PyBrain

PyBrain is an established, expansive, general purpose library for machine learning in Python [33],
but also offers infrastructure for conducting RL experiments with a similar focus to RLPy. The
library includes a number of the standard environments and agents, with a large number of model-
free algorithms.

Get it here: http://www.pybrain.org/

24 keras-rl

keras-rl provides integration between Keras [9] and many popular Deep RL algorithms.
keras-rl offers an expansive list of implemented Deep RL algorithms in one place, including:
DQN, Double DQN [40], Deep Deterministic Policy Gradient [24], and Dueling DQN [41]. For
those that use Keras for deep learning and mostly want to focus on deep RL, keras-r1 library is a
great choice.

Get it here: https://github.com/keras-rl/keras-rl

2.5 RLLib

RLLib is built on top of ray?, which serves to parallelize typical machine learning experimental
pipelines [23]. RLLib allows for either PyTorch or tensorflow as a backend, and excels at running
experiments in parallel. It contains implementations of many of the latest deep RL algorithms and
offers interface to the OpenAl Gym along with multi-agent environments.

Get it here: https://ray.readthedocs.io/en/latest/rllib.html

2.6 Horizon

Horizon is Facebook’s new applied RL library [15]. Per the enterprise scale needs of Facebook,
Horizon is primarily designed for large implementation: “Horizon is designed with production use
cases as top of mind”. The library offers many of the canonical deep RL algorithms and is built on
top of PyTorch.

Get it here: https://github.com/facebookresearch/Horizon

*https://github.com/ray-project/ray



2.7 python-rl

python-rl [11] provides integration with the classic language-agnostic framework RL-Glue [39].
The main goal of this library is to bring RL-Glue up to date with a few somewhat more recent
features, agents, and environments in common RL experiments.

Get it here: https://github.com/amarack/python-rl

2.8 reinforcement-learning

reinforcement-learning offers an excellent resource for RL education—it is designed to
be paired with David Silver’s online RL course® [5]. The library contains many central al-
gorithms, including value iteration, policy iteration, Q-Learning [42], SARSA [36], and Pol-
icy Gradient [43, 38]. Programmers planning to go through David Silver’s course may find the
reinforcement-learning library the most suitable package.

Get it here: https://github.com/dennybritz/reinforcement-learning

2.9 dopamine

dopamine is a recently released library [3] offering many of the most recent deep RL algorithms
including Rainbow [18], Prioritized Experience Replay [34], and Distributional RL [2], with an eye
for reproducibility in the ALE based on the suggestions given by [27]. dopamine offers a lot for
people whose main agenda is to run experiments in the ALE or perform new research in deep RL.

Get it here: https://github.com/google/dopamine

To summarize: Many great packages are already out there. The main differentiating features of
simple_rl are (1) quick generation of plots, (2) focus on reproducibility, and (3) emphasis on
simplicity, both in terms of algorithmic development and its attachment to classical RL problems
(like grid worlds).

3 Overview of Features

We begin by unpacking the example in Figure 2 to showcase the main design philosophy of
simple_rl.

3.1 The Core: Agents and MDPs

The library primarily consists of agents and environments (called “tasks” in the library).

Agents, by default, are all subclasses of the abstract class, Agent, which is only responsible for
a method act (self, state, reward) — action. A list of agents, planning algorithms, and
tasks currently implemented is presented in Table 1.

Tasks, for the most part, all inherit from the abstract MDP class, MDP. The core of an MDP is
its transition function and reward function, captured in the abstract class by class-wide variables,
transition_func and reward _func:

transition_func(state, action) — state, @))

reward_func(state, action, next_state) — reward. 2)

When defining an MDP instance, you must pass in functions of 7" and R that output a state and re-
ward, respectively. In this way, no MDP is ever responsible for enumerating either S or A explicitly,
thereby allowing for (1) simple specification of these two functions, and (2) efficient implementation
of high-dimensional domains—we need only represent and store the states that are visited during
experimentation.

3https://www.youtube.com/watch?v=2pWv7GOvuf0




Naturally, MDP subclasses have a variety of arguments—in the earlier grid-world example, we saw
the GridWor1dMDP class take as input the dimensions of the grid, a starting location, and a list of
goal locations. Such inputs are typical to MDP classes in simple_rl.

( M

RL Agents Q-Learning, RMax, DelayedQ, DoubleQ, Random, Fixed
Linear Q-Learning, DQN, LinUCB.
Planning Algorithms  Value Iteration, Bounded RTDP, MCTS

MDPs Chain, Grid World, Randomized Graph, Open Al Gym
Combo Lock, Puddle, Hanoi, Bandit
OOMDPs Taxi, Trench, Cleanup
POMDPs Maze
Markov Games Grid Games, Rock Paper Scissors, Prisoner’s Dilemma, Gather
. J

Table 1: An overview of Agents and MDPs in simple_rl.

3.1.1 Running Simple Experiments

Defining an agent and an MDP is almost all that is needed to run an experiment. The final component
required is an experiment function from the run_experiments. py file. This file contains a number
of different experiment types that are catered to the different environment types (POMDPs, Markov
Games, and so on). For now, let us focus on run_agents_on._mdp function, which is the most
canonical. As per the example in Figure 2, this function takes as input at minimum a list of agents
and an MDP instance. A user can also specify experimental parameters like instances, episodes,
and steps, which indicate the following:

e instances: The number of times to repeat the entire experiment (will be used to form
95% confidence intervals for all experiments conducted).

e episodes: The number of episodes per instance. An episode will consist of steps number
of steps, after which the agent is reset to the start state (but gets to remember what it has
learned so far).

e steps: The number of steps per episode.

The plotting is set up to plot all of the above appropriately. For instance, if a user sets episodes=1
but steps=50, then the library produces a step-wise plot (that is, the x-axis is steps, not episodes).

Running the function run_agents_on_mdp will create a JSON file detailing all of the components
of the experiment needed to rerun it. Then, it will create a folder locally, “results”, store each
agent’s stream of received rewards, and print out the status of the experiment to console. When
the experiment concludes, a learning curve with 95% confidence intervals will be generated (via
simple_rl/utils/chart_utils.py and opened. The JSON file lets users of the library recon-
struct and rerun the original experiment using another function from the run_experiments.py
script. In this way, the JSON file is effectively a certificate that this plot can be reproduced if the
same experiment were run again. We provide more detail on this feature in Section 3.2.

We can also run a similar experiment in the OpenAl Gym (Figure 3).

As can be seen in Figure 3, the structure of the experiment is identical. Since we define a GymMDP,
we pass as input the name of the environment we’d like to produce: In this case, we’re running ex-
periments in CartPole-v1, but any of the usual Gym environment names will work. We can also pass
in the render boolean flag, indicating whether or not we’d like to visualize the learning process. Al-
ternatively, we can pass in the render_every_n_episodes flag (along with render=True), which
will only render the agent’s learning process every NN episodes.

On longer experiments, we may want additional feedback about the learning process. For this pur-
pose, the run_agents_on_mdp function also takes as input a Boolean flag verbose, which, if true,
will provide detailed episode-by-episode tracking of the progress of the experiment to the console.
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from simple_rl.tasks import GymMDP
from simple_rl.agents import RandomAgent, LinearQAgent
from simple_rl.run_experiments import run_agents_on_mdp

gym_mdp = GymMDP (env_name=’CartPole-v1’, render=True)
num_feats = gym_mdp.get_num_state_feats()

rand_agent = RandomAgent (gym_mdp.get_actions())
lin_q_agent = LinearQAgent(gym_mdp.get_actions(), num_feats, rbf=True)
agents = [lin_q_agent, rand_agent]

run_agents_on_mdp(agents, gym_mdp, instances=5, episodes=5000, steps=200)

Figure 3: Running experiments in the OpenAl Gym.

There are a number of other ways to run experiments, but these examples capture the core experi-
mental cycle.

Other Environment Types The library offers support for other types of environments beyond typ-
ical MDPs, including classes for Object-Oriented MDPs or OOMDPs [14], k-Armed Bandits [8],
Partially Observable MDPs or POMDPs [21], a probability distribution over MDPs for lifelong
learning [7], and Markov Games [25]. Aspects of these classes are handled slightly differently to
accommodate the different kinds of decision-making problems they capture, but the interface to run
experiments with each type is nearly identical. Examples for how to run experiments with each type
of environment are included in the examples directory in the repository along with a test script that
ensures each example can run on a given machine. Running experiments with these other environ-
ment types is the same as the pipeline so far described: a function in the run_experiments.py
script will handle all of the interactions between agent(s) and environment and produce a plot when
the experiment finishes. Notably, the reproducibility feature is not yet fully developed for all envi-
ronment types. This is a major direction for future development of the library.

3.2 Reproducibility

Due to its simplicity, the library is naturally suited for reproducing results from previously run ex-
periments. As mentioned, every experiment that is conducted using the library will create a directory
with the experiment name containing a JSON file “full_experiment_data.json” that enumer-
ates every parameter, agent, MDP, and type needed to launch the exact same experiment another
time. The idea is that these files can be shared across users of the library—if a user gives someone
else this file (and the necessary agents and environments), it is a contract that they can rerun exactly
the same experiment just run using simple_rl.

Using one of these experiment files, the function reproduce_from_exp_file(exp_name), will
read the experiment file, reconstruct all the necessary components, rerun the entire experiment, and
remake the plot. Thus, providing one of these JSON files is to be interpreted as a certificate that this
experiment is guaranteed to produce similar results.

As an example, consider again the code from Figure 2. Running this code will create: (1)
the “results” directory, (2) the “gridworld_h-3_w-4" directory within results, and (3) the
“full _experiment_data. json file, which contains all necessary parameters to rerun the experi-
ment.

Suppose someone provided the directory gridworld_h-3_w-4 containing the experiment file for
the above grid-world experiment. Then, we could run the following code:

1 from simple_rl.run_experiments import reproduce_from_exp_file

3 reproduce_from_exp_file("gridworld_h-3_w-4")




Which will automatically generate the plot in Figure 4b.
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Figure 4: Original results (left) and results generated by reproducing the experiment (right).

To ensure reproducibility of new subclasses or other bells and whistles attached to the library, any
agent or MDP must implement the “get_parameters(self)” method that returns a dictionary
containing all relevant parameters for the instance to be reconstructed. For example, consider the
QLearningAgent class in Figure 5.

Any introduced subclass that wants to play along well with the reproduction infrastructure in
simple_rl must have such a method.

We stipulate that this is a lightweight means of ensuring reproduction for three reasons: 1) it is
entirely obfuscated from the programmer, as all tracking of experimental parameters is done auto-
matically, 2) a single, universally formatted document (JSON) contains all the information needed to
guarantee reproduction of results (along with a copy of the library itself, and any new agents/MDPs),
and 3) the library is simple enough that most experiments consist of only a small number of moving
parts. The feature to reproduce from a JSON does not yet fully support all environment types, but it
is an active area of development for the library.

To recap, the introduced components define the essence of the library: 1) Center everything around
agents, MDPs, and interactions thereof; 2) Completely obscure the complexity of plotting and ex-
periment tracking from the programmer, while making it simple to plot and reproduce results if
neededl; 3) Simplicity above all else; 4) Treat things generatively—namely, MDPs transition mod-
els and reward functions are best implemented as functions that return a state or reward, rather than
enumerate all state—actions pairs.

def get_parameters(self):

1
2

3

4

5

6 param_dict = defaultdict(int)

7

8 param_dict["alpha"] = self.alpha

9 param_dict["gamma"] = self.gamma

10 param_dict["epsilon"] = self.epsilon_init
11 param_dict["anneal"] = self.anneal

12 param_dict["explore"] = self.explore

13

14 return param_dict

Figure 5: The get_parameters method of QLearningAgent.
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Utilities In addition to the core experimental pipeline described, the library is well stocked with
other utilities. These include a variety of plotting tools that allow direct control over the plots
created (for instance, experiments can also generate plots comparing CPU time taken by different
algorithms, and more). For more details on plotting, see the chart_utils.py script. The library
also offers functionality for visualizing grid world domains using pygame*. Two example visuals
are presented in Figure 6; in these case, the learning process is visualized while the experiment
runs. On the right, the estimated value of each state is shown. The library includes several de-
fault planning algorithms such as Value Iteration, Monte Carlo Tree Search [10], and Bounded Real
Time Dynamic Programming [28]. Planners can be used to compute the value function, the opti-
mal (or near-optimal) policy, or enumerate a state-action space (see planning_example.py in the
repository). For other supported features, see the examples directory.

4 Conclusion

simple_rl offers a lightweight suite of tools for conducting RL experiments in Python 2 and 3.
Its design philosophy focuses on obfuscating complexity from the end user, including the tracking
of experimental details, generation of plots, and construction of agents and MDPs. The result is
a package that is light in features but comes with an ease of use that lets only a few lines of code
generate and visualize results that are guaranteed to be reproducible. The library is available on the
Python package index, and thus can be installed with the usual pip install simple_rl. Many
features are currently under development: the most important near term goal is to expand the suite
of reproducibility tools to account for more variety across different operating systems and other
variables that might impact experiments. Additionally, the library would benefit from a suite of
basic deep RL algorithms for use in experimentation and a more general interface for visuals.
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