
Exploratory Gradient Boosting for Reinforcement Learning in Complex Domains

David Abel‡ Alekh Agarwal† Fernando Diaz† Akshay Krishnamurthy† Robert E. Schapire†
‡Department of Computer Science, Brown University, Providence RI 02912

† Microsoft Research, New York NY 10011

Abstract
High-dimensional observations and complex real-
world dynamics present major challenges in rein-
forcement learning for both function approxima-
tion and exploration. We address both of these
challenges with two complementary techniques:
First, we develop a gradient-boosting style, non-
parametric function approximator for learning on
Q-function residuals. And second, we propose an
exploration strategy inspired by the principles of
state abstraction and information acquisition un-
der uncertainty. We demonstrate the empirical ef-
fectiveness of these techniques, first, as a prelimi-
nary check, on two standard tasks (Blackjack and
n-Chain), and then on two much larger and more
realistic tasks with high-dimensional observation
spaces. Specifically, we introduce two benchmarks
built within the game Minecraft where the observa-
tions are pixel arrays of the agent’s visual field. A
combination of our two algorithmic techniques per-
forms competitively on the standard reinforcement-
learning tasks while consistently and substantially
outperforming baselines on the two tasks with high-
dimensional observation spaces. The new func-
tion approximator, exploration strategy, and evalua-
tion benchmarks are each of independent interest in
the pursuit of reinforcement-learning methods that
scale to real-world domains.

1 Introduction
Many real-world domains have very large state spaces and
complex dynamics, requiring an agent to reason over ex-
tremely high-dimensional observations. For example, this
is the case for the task in Figure 1, in which an agent must
navigate to the highest location using only raw visual input.
Developing efficient and effective algorithms for such envi-
ronments is critically important across a variety of domains.

Even relatively straightforward tasks like the one above
can cause existing approaches to flounder; for instance, sim-
ple linear function approximation cannot scale to visual in-
put, while nonlinear function approximation, such as deep Q-
learning [Mnih et al., 2015], tends to use relatively simple
exploration strategies.

Figure 1: Visual Hill Climbing: The agent is rewarded for
navigating to higher terrain while receiving raw visual input.

In this paper, we propose two techniques for scaling re-
inforcement learning to such domains: First, we present a
novel non-parametric function approximation scheme based
on gradient boosting [Friedman, 2001; Mason et al., 2000],
a method meant for i.i.d. data, here adapted to reinforcement
learning. The approach seems to have several merits. Like
the deep-learning based methods [Mnih et al., 2015] which
succeed by learning good function approximations, it builds
on a powerful learning system. Unlike the deep-learning ap-
proaches, however, gradient boosting models are amenable to
training and prediction on a single laptop as opposed to being
reliant on GPUs. The model is naturally trained on residu-
als, which was recently shown to be helpful even in the deep
learning literature [He et al., 2015]. Furthermore, boosting
has a rich theoretical foundation in supervised learning, the
theory could plausibly be extended to reinforcement learning
settings in future work.

As our second contribution, we give a complementary ex-
ploration tactic, inspired by the principle of information ac-
quisition under uncertainty (IAUU), that improves over "-
uniform exploration by incentivizing novel action applica-
tions. With its extremely simple design and efficient use
of data, we demonstrate how our new algorithm combining
these techniques, called Generalized Exploratory Q-learning
(GEQL), can be the backbone for an agent facing highly com-
plex tasks with raw visual observations.

We empirically evaluate our techniques on two standard
RL domains (Blackjack [Sutton and Barto, 1998] and n-

ar
X

iv
:1

60
3.

04
11

9v
1

 [c
s.A

I]
 1

4
M

ar
 2

01
6

chain [Strens, 2000]) and on two much larger, more realis-
tic tasks with high-dimensional observation spaces. Both of
the latter tasks were built within the game Minecraft1 where
observations are pixel arrays of the agent’s visual field as in
Figure 1. The Minecraft experiments are made possible by a
new Artificial Intelligence eXperimentation (AIX) platform,
which we describe in detail below. We find that on the stan-
dard tasks, our technique performs competitively, while on
the two large, high-dimensional Minecraft tasks, our method
consistently and quite substantially outperforms the baseline.

2 Related Work
Because the literature on reinforcement learning is so vast, we
focus only on the most related results, specifically, on func-
tion approximation and exploration strategies. For a more
general introduction, see [Sutton and Barto, 1998].

Function approximation is an important technique for scal-
ing reinforcement-learning methods to complex domains.
While linear function approximators are effective for many
problems [Sutton, 1984], complex non-linear models for
function approximation often demonstrate stronger perfor-
mance on many challenging domains [Anderson, 1986;
Tesauro, 1994]. Unlike recent approaches based on neu-
ral network architectures [Mnih et al., 2015], we adopt
gradient boosted regression trees [Friedman, 2001], a non-
parametric class of regression models with competitive per-
formance on supervised learning tasks. Although similar en-
semble approaches to reinforcement learning have been ap-
plied in previous work [Marivate and Littman, 2013], these
assume a fixed set of independently-trained agents rather than
a boosting-style ensemble.

Our work introduces the interleaving of boosting iterations
and data collection. By its iterative nature, our approxima-
tion resembles the offline, batch-style training of Fitted Q-
Iteration [Ernst et al., 2005] in which a Q-learner is iteratively
fit to a fixed set of data. Our algorithm differs in that, at each
iteration, the current Q-function approximation guides subse-
quent data collection, the results of which are used to drive the
next update of the Q-function. This adaptive data collection
strategy is critical, as the exploration problem is central to
reinforcement learning, and, in experiments, our interleaved
method significantly outperforms Fitted Q-Iteration.

Our other main algorithmic innovation is a new exploration
strategy for reinforcement learning with function approxima-
tion. Our approach is similar to some work on state abstrac-
tion where the learning agent constructs and uses a compact
model of the world [Dietterich, 2000; Li et al., 2006]. An
important difference is that our algorithm uses the compact
model for exploration only, rather than for both exploration
and policy learning. Consequently, model compression does
not compromise the expressivity of our learning algorithm,
which can still learn optimal behavior, in contrast with typi-
cal state-abstraction approaches.

A number of other works propose exploration tac-
tics for RL with function approximation. For example,
Oh et al. [2015] train a model to predict the future state from
the current state and a proposed action, and then use similarity

1
https://minecraft.net/

of the predicted state to a memory bank to inform exploration
decisions. Another approach is to learn a dynamics model
and to then use either optimistic estimates [Xie et al., 2015]
or uncertainty [Stadie et al., 2015] in the model to provide
exploration bonuses (see also [Guez et al., 2012]). Lastly,
there are some exploration strategies with theoretical guar-
antees for domains with certain metric structure [Kakade et
al., 2003], but this structure must be known a priori, and it is
unclear how to construct such structure in general.

3 The GEQL Algorithm
In this section, we present our new model-free reinforcement-
learning algorithm, Generalized Exploratory Q-Learning
(GEQL), which includes two independent but complementary
components: a new function-approximation scheme based
on gradient boosting, and a new exploration tactic based on
model compression.

3.1 The setting
We consider the standard discounted, model-free
reinforcement-learning setting in which an agent inter-
acts with an environment with the goal of accumulating high
reward. At each time step t, the agent observes its state
st 2 S , which might be represented by a high-dimensional
vector, such as the raw visual input in Figure 1. The agent
then selects an action at 2 A whose execution modifies
the state of the environment, typically by moving the agent.
Finally, the agent receives some real-valued reward rt. This
process either repeats indefinitely or for a fixed number
of actions. The agent’s goal is to maximize its long-term
discounted reward,

P1
t=1 �

t�1rt, where � 2 (0, 1) is a
pre-specified discount factor.

This process is typically assumed to define a Markov deci-
sion process (MDP), meaning that (1) the next state reached
st+1 is a fixed stochastic function that depends only on the
previous state st and the action at that was executed; and
(2) that the reward rt similarly depends only on st and at.

For simplicity, we assume in our development that the
states are in fact fully observable. However, in many real-
istic settings, what the agent observes might not fully define
the underlying state; in other words, the environment might
only be a partially observable MDP. Nevertheless, in practice,
it may often be reasonable to use observations as if they actu-
ally were unobserved states, especially when the observations
are rich and informative. Alternatively for this purpose, we
could use a recent past window of observations and actions,
or even the entire past history.

3.2 Boosting-based Q-function approximation
Our approach is based on Q-learning, a standard RL tech-

nique. Recall that the optimal Q? function is defined, on
state-action pair (s, a), to be the expected discounted reward
of a trajectory that begins at state s, with a the first action
taken, and all subsequent actions chosen optimally (to maxi-
mize the expected discounted reward). Under general condi-
tions, this function satisfies, for all s, a,

Q?
(s, a) = E[r + � ·max

a0
Q?

(s0, a0)] (1)

Algorithm 1 GEQL
INPUT: Number of episodes T , discount factor �,
state-collapsing function �, learning rate schedule ↵t.
OUTPUT: Policy ⇡.

1: ˆQ(s, a) = 0 for all s 2 S , a 2 A.
2: for t = 1, . . . , T do
3: Set s1 to start state
4: for i = 1, . . . , E do
5: Choose ai using ˆQ and IAUU exploration strategy
6: Execute ai, observe ri, transition to si+1.
7: end for
8: Set h to minimize (2) over regressors in H
9: ˆQ ˆQ+ ↵th

10: end for
11: return ⇡Q̂ where ⇡Q̂(s) = argmaxa

ˆQ(s, a)

where r is the (random) reward and s0 is the (random)
next state reached when action a is executed from state s.
Like other function-approximation schemes, ours constructs
a function ˆQ that approximates Q? by attempting to fit Eq. (1)
on observed data.

As shown in Algorithm 1, we build the function ˆQ iter-
atively in a series of episodes using a gradient-boosting ap-
proach. In each episode, we first use ˆQ to guide the behavior
of the agent, mainly choosing actions that seem most benefi-
cial according to ˆQ, but occasionally taking exploration steps
in a way that will be described shortly. In this way, the agent
observes a series of state-action-reward tuples (si, ai, ri).
(For simplicity, we suppose each episode has fixed length E,
but the method can easily handle variable length episodes.)

The next step is to use these observations to improve ˆQ.
Specifically, the algorithm fits a regressor h to the residuals
between the current approximation and the observed one-step
look-ahead, as is standard for boosting methods. That is, h :

S ⇥A! R is chosen to (approximately) minimize

E�1X

i=1

[h(si, ai)+ ˆQ(si, ai)� (ri+ �max

a0
ˆQ(si+1, a

0
))]

2 (2)

over functions h in some class H of weak regressors. As
a typical example, the weak regressors might be chosen to
be regression trees, which are highly flexible, effective, and
efficiently trainable [Mohan et al., 2011]. Once h has been
computed, it is added to the function approximator ˆQ, thus
also updating how actions will be selected on future episodes.

This function-approximation scheme has several important
advantages over existing approaches. First, by using a non-
linear base model, such as regression trees, the agent is able
to learn a complex, non-parametric approximation to the Q?

function, which is crucial for settings with high-dimensional
observations. At the same time, the training procedure is
computationally efficient as updates occur in batches and tra-
jectories can be discarded after each update. Finally, by in-
terleaving data collection using the learned policy induced by
ˆQ with residual regression on the data so collected, we intu-
itively improve the quality and informativeness of the dataset,

thus enabling the agent to more effectively and accurately ap-
proximate the optimal Q? function.

3.3 The IAUU exploration strategy

The second novel component of the algorithm is an explo-
ration technique that borrows ideas from the state-abstraction
literature. The technique uses a state-collapsing function �
which maps each state s to one of m clusters, where m is
relatively small. In GEQL, this function is trained by cluster-
ing a large dataset of states, for instance, using the k-means
algorithm (as in all our experiments), and associating each
state s with the nearest cluster center. Ideally, an optimality-
preserving compression would be used, such as those char-
acterized by Li et al., [2006], but such abstractions are not
always easily computable.

The main idea of our technique is to keep track of how
often each action has been taken from states in each of the
clusters, and to choose exploratory steps that encourage the
choice of actions that were taken less often in the current clus-
ter. Thus, on each episode, for each of the m clusters c, and
for each action a, we maintain a count M(c, a) of how often
action a was taken from states s in cluster c, i.e., for which
�(s) = c. For each state s, this table induces a Gibbs distribu-
tion over actions defined by p(a|s) / exp{�⇢M(�(s), a)}
where ⇢ > 0 is a temperature parameter that controls the uni-
formity of this distribution. In concert with the current func-
tion approximator ˆQ, we use this distribution to define a ran-
domized choice of actions at each step of the episode. Specif-
ically, when in the current state s, with probability 1� ", we
choose to act greedily, selecting the action a that maximizes
ˆQ(s, a); and with probability ", we take an exploration step,
sampling a from p(a|s). We call this exploration strategy In-
formation Acquisition Under Uncertainty or IAUU.

This strategy shares some of the benefits of the work on
state abstraction without suffering from the drawbacks. The
main advantage is that the state-collapsing function promotes
applying infrequently-taken actions, thereby encouraging the
agent to visit new regions of the state space. However, in
contrast with the state-abstraction literature, the method re-
mains robust to misspecification of the state-collapsing func-
tion since we use it only for exploration so that it does not
compromise the agent’s ability to learn optimal behavior. Fi-
nally, IAUU exploration adds minimal computational over-
head as the space needed is O(m|A|) and the additional run-
ning time per action remains O(|A|).

The IAUU exploration tactic is not attached to the function
approximation scheme, so it can also be used with Q-learning
in the tabular setting, i.e., when ˆQ is maintained explicitly as
a table. In this case, there are a number of modifications to the
exploration strategy under which the convergence properties
of Q-learning can be retained. One option is to modify the
exploration distribution p(a|s) to mix in a vanishingly small
amount of the uniform distribution. Another option is to only
count exploration steps when updating the state-visitation ta-
ble M . In both cases, each action is taken from each state
infinitely often, and this property suffices to ensure conver-
gence of Q-learning in the tabular setting.

4 Experiments on Standard Benchmarks
This section details our evaluation on the two standard rein-
forcement learning benchmarks of Blackjack and n-Chain.

4.1 Blackjack
We conducted experiments on the Blackjack domain, im-
plemented exactly as defined in Section 5.1 of Sutton and
Barto [1998]. In this experiment, we test the hypothesis that
GEQL will improve over standard baselines even in fairly
simple domains without high-dimensional visual input. In
particular, Blackjack is fully observable, has low noise, low
dimension, short episodes, and a small action space.

Algorithms and Parameters: For GEQL, we used depth-
2 regression trees as the weak regressors, fit using Python’s
scikit-learn package [Buitinck et al., 2013]. To test and iso-
late the effectiveness of our incremental boosting approach
(henceforth booster), we compared GEQL against three
baseline function approximators:

1. Q-learning with a linear approximator (linear)
2. Q-learning with a Batch Boosted Regression approxi-

mator, similar to Fitted Q-Iteration (batchboost)
3. Q-learning with a Batch Random Forest Regression ap-

proximator (forest).
Each approximator used the same set of features for all ex-
periments. The two batch-based regression approaches were
trained after every 50 episodes. Similar to GEQL, we set the
depth of the regression trees for each of the batch approaches
to two. The batchboost and forest approximators used
the same number of total trees as GEQL, but were trained
in batch. That is, if we run for 500 episodes, then each tree
based approach gets a total of 500 trees. For batchboost
and forest, all the 500 trees are retrained on 50 episodes
worth of data, while booster adds a new tree every episode.

We ran all function approximators with ✏-uniform explo-
ration and with IAUU exploration. Across all experiments,
we set ✏0 = 0.4, ↵0 = 0.15, � = 0.95, and decayed
so that, during episode t, ✏t = ✏0/(1 + 0.04t), and ↵t =

↵0/(1 + 0.04t). The state clustering function used for IAUU
was learned for each individual task by randomly sampling
states via a random policy.

Results: Figure 2 shows results from 100 trials run for
500 episodes each. The results indicate that during these
500 episodes, very minimal learning occurred for the lin-
ear approximator, while the gradient-boosting approximator
was able to learn to play far more effectively (yielding a
statistically significant improvement in performance). The
two batch approximators demonstrated some learning, though
the gradient-boosting approximator far outperformed both of
them. However, the exploration tactic had a negligible ef-
fect in this domain, likely due to the small action space (two
actions), and short episodes (typically between one and two
actions per episode). The brevity of each episode may also
explain why the linear approximator learned so little in this
many episodes.

4.2 n-Chain
We conducted experiments on the n-Chain domain from
Strens [2000]. In this domain, there are n states numbered

0 100 200 300 400 500

-0.6

-0.5

-0.4

-0.3

-0.2

Figure 2: Blackjack: Running average per-episode re-
ward with error band denoting 2 standard errors for IAUU
runs (Legend: red: booster, blue:forest, green:
batchboost, black: linear; solid: IAUU, dashed: uni-
form).

0 50 100 150 200

100

150

200

250

300

350

Figure 3: n-Chain: Running average per-episode reward
(Legend: IAUU: solid, RMAX: dashed, Q-learning: dotted)

0, . . . , n � 1, each with two actions available: applying the
forward action in state i advances the agent to state i + 1,
while the return action moves the agent to state 0. Applica-
tions of the forward action provide zero reward in all states
except transitions to state n� 1, which provides reward 100.
Applications of the return action receive reward 2 for all tran-
sitions. Both actions are also stochastic, so that with proba-
bility 0.2, they have the opposite effect. This task poses a
challenging exploration problem since the agent must avoid
greedily taking the return action to learn optimal behavior by
exploring all the way to the last state in the chain. We used
n = 5, which is a typical setting for this task.

Algorithms: As this is a tabular problem, we evaluated
only tabular methods. We used a tabular Q-learner with uni-
form exploration, IAUU exploration, and the RMAX algo-
rithm [Brafman and Tennenholtz, 2003], which is a model
based algorithm with strong sample complexity guarantees.

Results: Figure 3 displays results from 5000 trials. Unsur-
prisingly, RMAX significantly outperformed the two tabular
Q-learning strategies used here since it is designed to seek
out all state-action applications helping it to quickly discover
the high reward at the end of the chain. Q-Learning with ✏-
uniform exploration, on the other hand, will only discover the
high reward in the last state of the chain with exponentially

small probability since the agent will favor the greedy action
and must repeatedly explore to advance down the chain. The
IAUU exploration is between these two extremes; it general-
izes to extremely large state spaces unlike RMAX, but pro-
vides more effective exploration than ✏-uniform.

5 Experiments on Visual Domains
This section describes our empirical evaluation on two highly
challenging problems in which the agent must reason over
raw RGB images. We used the Minecraft game platform to
provide environments for the two tasks. Minecraft is a 3D
blocks world in which the player can place blocks, destroy
blocks, craft objects, and navigate the terrain. The size of the
underlying state space grows exponentially with the number
of blocks allowed in the world, which is typically on the or-
der of millions, making planning and learning infeasible for
tabular approaches. Moreover, there are day and night cycles
and weather cycles that dramatically alter the visual world, as
well as animals that roam the world, and underwater environ-
ments. The size of the state space and these complex visual
elements pose significant challenges to learning from raw vi-
sual inputs. Minecraft has previously been used in planning
research [Abel et al., 2015], and has been advocated as a gen-
eral artificial intelligence experimentation platform [Aluru et
al., 2015].

Our experimental results here are enabled by a recently de-
veloped Artificial Intelligence eXperimentation (AIX) plat-
form, designed for experimentation within Minecraft. AIX
provides a flexible and easy-to-use API to the Minecraft en-
gine that allows for full control of an agent, including ac-
tion execution and perception, as well as precise design of
the Minecraft world the agent operates in (i.e. specific block
placement, day and night cycles, etc.). For the Visual Grid
World task, we hand crafted a grid world inspired by the clas-
sical reinforcement learning task [Russell and Norvig, 1995],
while the Visual Hill Climbing task was built by Minecraft’s
random world generator. With AIX running, Minecraft runs
around 30 frames per second, though our agents only execute
around 2 actions per second.

5.1 Implementation Details
Visual System: In a rich 3D world such as Minecraft, re-
inforcement learning agents require additional preprocessing
of raw RGB observation. We employ classical computer vi-
sion techniques for preprocessing of the raw visual images
from the Minecraft game. The input to the visual pipeline
is a 320 ⇥ 240 image of the Minecraft agent’s view, with all
distracting UI elements (such as the toolbar) removed.

We use data from a five-minute random exploration of the
Minecraft world (in which the agent takes a random action
every time step). Specifically, for every 20th frame received
from the game engine, the agent performs SURF key-point
detection [Bay et al., 2008], and stores the set of key points
in a dataset. After five minutes, the agent performs k-means
clustering on the space of all key points to reduce the dimen-
sionality of the key-point space of interest. This training is
done offline before experiments are conducted. The same vi-
sual system is used for all algorithms. The system is trained
separately for each task.

During the task, for each new frame the agent receives, it
partitions the frame into a 3 ⇥ 3 grid. For each partition, the
agent finds the key point that is most similar to each of the
key-point centers, and computes its distance. This distance is
used as a feature for that cell. The ultimate feature vector is
the concatenation of each partition’s key-point distances (so
if k = 10, there will be 10 features per 3 ⇥ 3 partitions for a
total of 90 features plus a bias term).

Occupancy Grid: Since the RGB image available to the
vision system is based on the agent’s first-person perspective
(see Figure 1), the agent’s immediate surroundings are par-
tially occluded. As immediate surroundings are crucial to
decision making, we augment the agent with a 4 ⇥ 3 ⇥ 3

occupancy grid of the cells the agent is touching. This occu-
pancy grid contains a 1 if the corresponding cell adjacent to
the agent contains a block that is solid (e.g. dirt, grass, stone,
etc.) or water, and a 0 otherwise. These binary features, along
with the key point distances from the vision system, comprise
the state feature vector available to the agent.

State-Collapsing Function: For the state-collapsing func-
tion � (see Section 3.3), we train another k-means instance
that maps a given state object to a lower dimension. We let
the Minecraft agent explore for another five minutes, saving
every 20th frame. For each saved frame, the agent computes
the feature vector as described above and concatenates the
occupancy grid of the agent’s surrounding cells, storing these
vectors in a data set. After five minutes, the agent performs
k-means on the data set of features to reduce the feature space
to a lower dimension. The training is also done offline before
experiments are conducted, and all IAUU algorithms use the
same state-collapsing function for each task.

During learning, IAUU agents evaluate the state-collapsing
function by mapping the current state’s feature vector to the
nearest cluster center in this k-means instance.

5.2 Visual Grid World
The first task we consider is the Visual Grid World task. Here,
the environment consists of a 6 ⇥ 6 grid. The agent always
starts at (0, 0) and must navigate to (5, 5) using only move-
ments North, East, South, and West. There is no rotation (i.e.
the agent is always facing North). At each state, the agent ob-
serves the raw bitmap image of the agent’s view (Figure 4),
which is preprocessed using the vision system and augmented
with the occupancy grid. The reward function is the negation
of the agent’s Euclidean distance away from the goal. For ex-
ample, if the agent is a distance of 5 from the goal, the agent
receives �5 reward. All transitions are deterministic. The op-
timal policy will achieve a reward of roughly �31 for directly
proceeding to the goal.

Algorithms and Parameters: As in Blackjack, we
used four function-approximation schemes (linear,
batchboost, forest, and our interleaved gradient-
boosting approach denoted as booster), and two ex-
ploration strategies (✏-uniform and IAUU). Regression
problems are solved after each episode for the linear and
gradient approximators using data from only the most recent
episode. The batchboost and forest approximators are
completely retrained every five episodes, using only the most
recent five episodes of data. As before, the depth and number

Figure 4: Visual Grid World: The agent is rewarded for nav-
igating to the blue pillar while receiving raw visual input.

of trees in all tree-based methods is set to two and the total
number of episodes (100). Other parameters are set as in the
Blackjack experiment.

Results: Figure 5 shows results from five trials for 100
episodes, where each episode was at most 40 seconds.
Results demonstrate that the gradient-boosting approxima-
tor led to dramatically faster learning on this task than
the linear approximator (statistically significant at the 0.05
level). booster also outperforms the two batch approx-
imators with similar statistical significance, apart from the
batchboost baseline with uniform exploration (which still
underperforms, though insignificantly). While the combina-
tion of gradient boosting and IAUU exploration has the best
average performance, the improvement over gradient boost-
ing with ✏-uniform is not statistically significant. Due to the
speed of the Minecraft engine, scaling these experiments is
challenging. Nevertheless, these results clearly show that
GEQL (booster with IAUU exploration) is a major im-
provement over all previous baselines for this challenging
task.

Since we know the reward of the optimal policy in this
case, we also checked the reward for the policy learned by
booster at the end of 100 episodes. We found that the
average rewards of booster with IAUU and uniform ex-
plorations were �34.22 and �82.77 respectively. Note that
the optimal policy gets a reward close to �31, while the best
baseline of batchboost with uniform exploration picks up
a reward around �119.5 in this task. Hence, we can conclude
that GEQL learns a significantly better policy than other base-
lines on the task.

5.3 Visual Hill Climbing
The second task, which we call Visual Hill Climbing, is espe-
cially difficult. At its core, it is a variant of non-convex op-
timization in a 3D environment. As with Visual Grid World,
the state is the preprocessed raw RGB bitmap image of the
agent’s view along with the occupancy grid. The agent must
climb the highest hill it can find by navigating a highly com-
plex 3D world that includes animals, lakes, rivers, trees, cav-
erns, clouds, pits, and a variety of different terrain types. An
example snapshot of the agent’s task is pictured in Figure 1.
This is an especially challenging exploration problem as the
agent’s view is restricted to a finite horizon, and the agent

0 20 40 60 80 100

-400

-350

-300

-250

-200

-150

-100

Figure 5: Visual Grid World: Running average per-episode
reward with error bands on IAUU versions, denoting 2 stan-
dard errors (Legend: red: booster, blue:forest, green:
batchboost, black: linear; solid: IAUU, dashed: uni-
form).

can only see in one direction at a time. Large hills may also
be partially occluded by trees, animals, the agent’s own arm,
and other hills. Scaling some hills involves steps with jumps
larger than agent can make in one action, meaning the agent
cannot scale the hill even if it gets there.

The agent may move forward in the direction it is facing,
turn left 90 degrees, turn right 90 degrees, jump up two units,
or perform a combination that jumps up two units and then
moves forward. The agent receives +N reward for increas-
ing its elevation by N units, �N reward for decreasing its
elevation by N units, and a small reward proportional to its
current height relative to “sea level”. So, if the agent’s ini-
tial elevation is 0, then if the agent reaches an elevation of
10, it will receive an additional 10

1000 reward. All transitions
are deterministic, but the state is only partially observable, so
repeated application of an action at a particular observation
may result in dramatically different future observations.

Algorithms and Parameters: We used the same algo-
rithms and parameter settings as for the Visual Grid World.

Results: Figure 6 displays results from ten trials for 100
episodes, where each episode was exactly 40 seconds. Again,
results indicate that the gradient booster is able to learn a far
better policy than any of the other approximators, and that
the IAUU exploration tactic helps. Indeed, only for the gra-
dient booster does non-negligible learning occur; given how
complex this domain is, it is extremely promising that we can
learn a reasonable policy at all (i.e. that the agent is able to
learn a policy that leads to positive reward, suggesting that
the agent is climbing a substantial amount).

To visualize the performance of our agent better, we plot
the elevation profile of the policy learned by booster with
IAUU exploration over time in Figure 7. We notice that while
the agent barely increases its elevation in the initial quarter
of the episodes, it is reliably reaching much better altitudes
in the last quarter indicating that it does identify the key to
succeeding at this task.

0 20 40 60 80 100

-2

0

2

4

6

1 - 25

0 20 40 60 80

-2

0

2

4

6

26 - 50

0 20 40 60 80

-2

0

2

4

6

51 - 75

0 20 40 60 80

-2

0

2

4

6

76 - 100

Figure 7: Visual Hill Climbing Elevation Profile: Elevation throughout an episode averaged over the episodes indicated in
the range (i.e. the first, second, third, and fourth 25 episodes) for booster (red) and forest (black), both with IAUU
exploration. All elevations are with respect to the starting elevation. The elevation of an effective agent should go up.

0 20 40 60 80 100

-50

0

50

100

150

Figure 6: Visual Hill Climbing: Running average per-
episode reward with error bands on IAUU versions, denoting
2 standard errors (Legend: red: booster, blue:forest,
green: batchboost, black: linear; solid: IAUU,
dashed: uniform).

6 Discussion
In this paper, we have described novel approaches to func-
tion approximation as well as exploration in reinforcement
learning, and evaluated it on challenging tasks implemented
within Minecraft. The encouraging performance of our meth-
ods suggests several other exciting avenues for future re-
search. Empirically, the performance of gradient boost-
ing coupled with its favorable computational properties ap-
pears very promising, and it would be interesting to compare
with more computationally-intensive deep-learning based ap-
proaches in future work. Extending the existing theory of
gradient boosting from supervised to reinforcement learning
is also a natural question.

In terms of exploration, while IAUU certainly improves
over ✏-uniform, it is still limited by the state-collapsing func-
tion used, and can be suboptimal if the least-frequent action
also happens to be bad. It remains challenging to find better
alternatives that are tractable for reinforcement learning with
real-time decisions and high-dimensional observations.

Finally, Minecraft provides an attractive framework to de-
velop visual versions of standard RL tasks. We show two ex-
amples here, but the opportunity to translate other tasks that
stress and highlight various learning abilities of an agent, as

well as understand the gulf to human performance is a very
exciting proposition for future work.

Acknowledgement: We would like to thank Katja Hoff-
man, Matthew Johnson, David Bignell, Tim Hutton, and other
members of the AIX platform development team, without
whose support this work would not be possible.

References
[Abel et al., 2015] David Abel, David Ellis Hershkowitz,

Gabriel Barth-Maron, Stephen Brawner, Kevin O’Farrell,
James MacGlashan, and Stefanie Tellex. Goal-based ac-
tion priors. In International Conference on Automated
Planning and Scheduling (ICAPS), 2015.

[Aluru et al., 2015] Krishna Aluru, Stefanie Tellex, John
Oberlin, and James MacGlashan. Minecraft as an experi-
mental world for ai in robotics. In AAAI Fall Symposium,
2015.

[Anderson, 1986] Charles William Anderson. Learning and
Problem Solving with Multilayer Connectionist Systems.
PhD thesis, University of Massachusetts Amherst, 1986.

[Bay et al., 2008] Herbert Bay, Andreas Ess, Tinne Tuyte-
laars, and Luc Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding, 2008.

[Brafman and Tennenholtz, 2003] Ronen I Brafman and
Moshe Tennenholtz. R-max-a general polynomial time al-
gorithm for near-optimal reinforcement learning. Journal
of Machine Learning Research, 2003.

[Buitinck et al., 2013] Lars Buitinck, Gilles Louppe, Math-
ieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gram-
fort, Jaques Grobler, et al. Api design for machine learning
software: experiences from the scikit-learn project. arXiv
preprint arXiv:1309.0238, 2013.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical rein-
forcement learning with the maxq value function decom-
position. Journal of Artificial Intelligence Research, 2000.

[Ernst et al., 2005] Damien Ernst, Pierre Geurts, and Louis
Wehenkel. Tree-based batch mode reinforcement learning.
In Journal of Machine Learning Research, 2005.

[Friedman, 2001] Jerome H Friedman. Greedy function ap-
proximation: a gradient boosting machine. Annals of
Statistics, 2001.

[Guez et al., 2012] Arthur Guez, David Silver, and Peter
Dayan. Efficient bayes-adaptive reinforcement learning
using sample-based search. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2012.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv:1512.03385, 2015.

[Kakade et al., 2003] Sham Kakade, Michael Kearns, and
John Langford. Exploration in metric state spaces. In In-
ternational Conference on Machine Learning, 2003.

[Li et al., 2006] Lihong Li, Thomas J Walsh, and Michael L.
Littman. Towards a Unified Theory of State Abstraction
for MDPs. International Symposium on Artificial Intelli-
gence and Mathematics (ISAIM), 2006.

[Marivate and Littman, 2013] Vukosi Marivate and
Michael Littman. An ensemble of linearly com-
bined reinforcement-learning agents. In AAAI Conference
Late-Breaking Papers, 2013.

[Mason et al., 2000] Llew Mason, Jonathan Baxter, Peter
Bartlett, and Marcus Frean. Functional gradient tech-
niques for combining hypotheses. In Advances in Large
Margin Classifiers, 2000.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 2015.

[Mohan et al., 2011] Ananth Mohan, Zheng Chen, and Kil-
ian Q Weinberger. Web-search ranking with initialized
gradient boosted regression trees. In Yahoo! Learning to
Rank Challenge, 2011.

[Oh et al., 2015] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee,
Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games.
In Advances in Neural Information Processing Systems
(NIPS), 2015.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig.
Artificial Intelligence A Modern Approach. Prentice-Hall,
Englewood Cliffs, 1995.

[Stadie et al., 2015] Bradly C Stadie, Sergey Levine, and
Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv:1507.00814,
2015.

[Strens, 2000] Malcolm Strens. A bayesian framework for
reinforcement learning. In International Conference on
Machine Learning (ICML), 2000.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
Press, 1998.

[Sutton, 1984] Richard S. Sutton. Temporal Credit Assign-
ment in Reinforcement Learning. PhD thesis, University
of Massachusetts Amherst, 1984.

[Tesauro, 1994] Gerald Tesauro. Td-gammon, a self-
teaching backgammon program, achieves master-level
play. Neural Computation, 1994.

[Xie et al., 2015] Christopher Xie, Sachin Patil, Teodor
Moldovan, Sergey Levine, and Pieter Abbeel. Model-
based reinforcement learning with parametrized
physical models and optimism-driven exploration.
arXiv:1509.06824, 2015.

