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Abstract

Lifelong Reinforcement Learning presents a diversity of challenges. Agents must
effectively transfer knowledge across tasks while simultaneously addressing ex-
ploration, credit assignment, and generalization. Abstraction can help overcome
these hurdles by compressing the state space or empowering the action space of
a learning agent, thereby reducing the computational and statistical burdens of
learning. In this work, we offer several new results on the effect of lifelong learn-
ing with abstractions. First, we introduce a new class of value-preserving state
abstractions whose optimal form can be computed efficiently, improving over ex-
isting NP-Hardness results. Second, we provide a generic sample bound for com-
puting high confidence state abstractions of these kinds in the lifelong setting.
Third, we show experimentally that only in the simplest of settings do state ab-
stractions offer improvements to lifelong learning. In light of these limitations, we
introduce a complementary action-abstraction algorithm that, when paired with a
state abstraction, enables efficient learning across tasks. Further, the joint state-
action abstraction defines a closed operator on MDPs, thereby yielding a simple
recipe for constructing and analyzing hierarchies for reinforcement learning.

1 Introduction

Abstraction is a central representational operation for Reinforcement Learning (RL), enabling fast
planning, deep exploration, and effective generalization. Previous work focuses on two forms of
abstraction: (1) State abstraction, which groups together similar world-states to form compressed
descriptions of the environment, and (2) Action abstraction, which yields compact models of tem-
porally extended behavior by correlating sequences of actions. These two methods of abstraction
provide powerful tools for simplifying complex problems, promising a principled method for scal-
ing RL. Lifelong RL proves an especially challenging learning setting, as learners also have to form
models that generalizes across tasks. The tools of abstraction are especially well suited to assist in
lifelong RL, as abstractions capture relevant task structure to aid in information transfer.

State abstraction’s core operation is aggregation, encompassing functions that group environmental
states together based on some measure of state similarity. Prior work introduces state-abstraction
types that are guaranteed to preserve properties about states they group together [8, 20, 11, 12, 10,
13, 1]. It is unknown how they generalize beyond a single task or, more generally, effect learning
difficulty.

Action abstraction describes tools for defining skills, which denote long horizon sequences of action
executions. The most canonical of these frameworks is that of Options [23]. The core principle is
to augment the agent’s model of the world with a collection of high level actions that probe more
deeply into the search space, resulting in targeted exploration, deep planning, or transfer [18, 6, 5, 4].

Hierarchical Reinforcement Learning Workshop at the 31st Conference on Neural Information Processing Sys-
tems (HRL@NIPS 2017), Long Beach, CA, USA.



In this paper, we offer several new results on abstractions aimed at lifelong RL. First, we introduce
a broad class of state-abstraction types whose optimal form can be computed efficiently, improv-
ing over existing NP-Hardness results. We provide a new state-abstraction type belonging to this
class and prove that it preserves reasonable value loss bounds. Second, we provide a generic sample
bound for computing high confidence state abstractions of these kinds in the lifelong setting. We
then present a negative empirical result: we find empirically that learning is not accelerated by ap-
proximate state abstractions, even optimal ones. We provide a diagnosis for this failure, suggesting
that only the combination of state and action abstraction can yield the expected reduction in learning
difficulty. We then introduce a complementary algorithm for computing action abstractions, which,
empirically, offers the most improvement in learning speed when combined with state abstractions.
We close by showcasing a simple recipe for defining hierarchical abstractions from repeated recur-
sion on applications of the introduced joint state–action abstraction. We suggest this paradigm offers
routes to analyze hierarchical RL more generally.

1.1 Background

First, we clarify our learning setting and other relevant definitions. We assume the traditional RL
formulation, wherein an agent interacts with a Markov Decision Process (MDP) to maximize long
term expected reward. For background on RL, see Kaelbling et al. [15], and for background on
MDPs, see Puterman [21]. Of growing interest in the RL literature is the lifelong or multitask setting,
in which an agent must interact with and solve many related tasks over the course of a lifetime as
in Brunskill and Li [5]. We offer the following instantiation of this setting:

Definition 1 (Lifelong RL): In Lifelong RL, the agent receives S,A, s0 ∈ S, horizonH , a fixed
but unknown transition model T , and a fixed but unknown distribution over reward functions,
D. The agent samples Ri ∼ D, and interacts with the MDP 〈S,A,Ri, T 〉 for H timesteps,
starting in state s0. After H timesteps, the agent resamples from D and repeats.

The goal of state abstraction is to reduce the size of the environmental state space by grouping
together similar states in a way that doesn’t change the underlying problem being solved. A state
abstraction type is defined with respect to a two-argument predicate on state pairs:

Definition 2 (State Abstraction Type): A state abstraction type is a collection of functions
φ : S 7→ Sϕ associated with a fixed predicate on state pairs:

p : S × S 7→ {0, 1}, (1)

such that when φ clusters state pairs, the predicate must be true for that state pair:

φ(s1) = φ(s2)→ p(s1, s2). (2)

Action abstraction has appeared under a diversity of names, including skills [17], macro-
operators [19, 22], and temporal abstraction. Most recently, the literature has focused on Op-
tions [23]:

Definition 3 (Option): An option is a triple 〈I, β, π〉, where I is a predicate on states denoting
when the option is available, β assigns a Bernoulli random variable to each state denoting the
probability that the option terminates during execution in that state, and π is a policy.

In the light of the generality of options, we consolidate action abstractions accordingly:

Definition 4 (Action Abstraction): An action abstraction is a function ω : O × S 7−→ A that
projects an option to ground actions given a ground state, with O, a non-empty set of options.

An action abstraction replaces the primitive action space. Reasoning with options, agents only make
a decision in states where no option is currently executing.
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2 Results

We first present a general sample bound for computing state abstractions of arbitrary types in lifelong
RL. All proofs are omitted due to space constraints, but we make them available in the appendix.
Theorem 2.1. Let P denote the space of all predicates on state pairs. For a given δ ∈ (0, 1],
any state abstraction of a type defined by a predicate in P can be computed such that two states
are incorrectly aggregated (that is, grouped, but shouldn’t be) only with probability (1 − δ)2 after

m ≥ 2 ln( 2
δ )

δ2 samplesR ∼ D from the distribution.

Thus, after m sampled and (exactly) solved MDPs, we can compute a high confidence state ab-
straction for the distribution D. In general, computing the optimal approximate state abstraction is
NP-Hard [10]. However, we introduce a restricted class of approximate state abstractions that can
be computed efficiently:
Theorem 2.2. Consider any transitive predicate on state pairs, p that takes computational com-
plexity cp to evaluate for a given state pair. The state abstraction type φp that induces the smallest
abstract state space can be computed1 in O(|S|2 · cp).

This is a dramatic reduction in computational complexity relative to the previous NP-Hardness re-
sult. The speed up comes from being able to determine a state’s abstract state simply by evaluating
each of its (at most |S|) edges. To leverage this observation, we introduce a new class of approxi-
mate state abstractions that satisfy transitivity. The idea behind the class is to discretize the interval
[0,VMAX], where VMAX = RMAX

1−γ , and aggregate states if the Q values for each action fall into the
same discrete bucket. Here, RMAX denotes the max possible reward received at a single time step,
and VMAX an upper bound on the value function.

Definition 5 (φQ∗,d): The φQ∗,d denotes a state-abstraction type with predicate:

pd(s1, s2) =

{
1 ∀a∈A : dd·Q

∗(s1,a)
VMAX

e = dd·Q
∗(s2,a)

VMAX
e

0 otherwise.
(3)

Further, any function φQ∗,d induces an abstract model whose policy is near optimal in the true MDP:
Theorem 2.3. The φQ∗,d abstraction type is a subclass of φQ∗ε , studied by Abel et al. [1] and Hutter
[13], with d = ε, and therefore, for a single MDP:

V ∗(s0)− V πφQ∗,d (s0) ≤
2dRMAX

(1− γ)2
. (4)

Thus, this class represents a reasonable candidate for state abstractions as it can be computed ef-
ficiently and has a value loss that scales according to a free parameter, d. We note that predicates
defining other existing abstraction types such as φ∗a [20] have natural translations to transitive pred-
icates, too.

2.1 Experiments

We conduct three simple experiments to showcase the effects of learning with various abstraction
combinations. In each experiment, we compute the state abstraction that induces the smallest ab-
stract space of the φQ∗,d type with respect to the distribution, where we set d = 0.05. For com-
parison, we also compute a candidate φQ∗,ε state abstraction with ε = 0.05. We experiment with
Q-Learning [24] with and without the new state-abstraction type, where Q-Learning uses an ε-
greedy policy with exploration parameter ε = 0.1 and learning rate α = 0.05. When the agent
reaches a goal, it receives +1 reward and is reset to the start position. We use a 10 × 30 lifelong,
episodic variant of the Upworld domain from Abel et al. [1] where the goal can appear in any cell in
the top row, and 15 × 15 lifelong variant of the Four Rooms domain from Sutton et al. [23], where
the goal can appear in the corners of each of the three non-starting rooms, and the classical Taxi
problem from Dietterich [9]. In Four Rooms, we also test with φh, a hand coded state abstraction
that assigns an abstract state to each room.

1Notably, the complexity of cp dictates the overall complexity of computing φp.
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Figure 1: Average cumulative reward over 500 (a), 1,000 (b), 200 (c), and 10,000 (d) task samples
from each distribution comparing: state abstractions in (a) and (b), state-action abstraction combi-
nations in (b) and (c), and a simple hierarchical abstraction in (d).

Results are presented in Figure 1. Across all of our experiments (even those not reported in this
version), the Upworld task distribution is the only domain that consistently yields improvements
for the state-abstraction learner relative to baselines. Results for the Four Rooms experiment are
presented in Figure 1b. In Four Rooms, we find that learners with approximate state abstractions
do not improve over Q-Learning (at all) for the given sample budget. We suggest that the domain
is indicative of the limitations of state abstractions: During most time steps, any agent using a state
abstraction remains in the same abstract state. As a result, state abstraction fails to mitigate the
difficulties of exploration (and possibly makes it more challenging), and makes credit assignment
even harder by spreading out any received feedback across a variety of aggregated states. Thus, the
learning aspects of the problem are still challenging (possibly more so), even if the planning horizon
is shortened.

We suggest that the combination of state and action abstraction can overcome these difficulties by
changing the exploration problem and directly addressing credit assignment through temporally ex-
tended actions, while retaining the generalizability of useful state abstractions. To this end, we
experiment with an algorithm for computing action abstractions for the lifelong setting; the algo-
rithm computes options that move the agent between each abstract cluster. We compute both the
state and action abstractions prior to beginning any learning as opposed to learning them online,
which we leave as future work. Due to space constraints, we defer the presentation of the algorithm
to the full version of the paper. Its details, ultimately, are unimportant for our present investigation;
here, we focus on the impact of various combinations of abstractions on learning. Algorithms run
with action abstraction are labeled with ‘aa’ in Figures 1b and 1c. Note that in both Four Rooms and
Taxi, just adding the action abstraction improves learning, but the combination of state and action
abstraction outperforms all other learners.

As a final note, we observe that the introduced combination of state and action abstractions defines
a closed operator on MDPs, and so suggests a natural method for computing hierarchies for RL:
Theorem 2.4. A given state-action abstraction pair (φ, ω) induces a closed operation on MDPs.

From the above result, we find a natural method for learning, computing, and making decisions
with hierarchies. We suggest the simplicity of construction of these hierarchies offers rich directions
for future analysis, both in terms of quality of the learning and planning speedups afforded by the
hierarchy, and in terms of efficiently computing or learning the representational structure itself.
Further, these computed hierarchies can be paired with any arbitrary RL algorithm. As a proof of
concept, we compute a simple hierarchy using this methodology for a 25×25 lifelong Four Room
task distribution and present results comparing a Q-Learning agent with and without the hierarchy
in Figure 1d. The results support the (well established) conclusion that effective hierarchies reduce
learning difficulty [9, 14, 3, 2, 7, 16]. Implementation details of the hierarchy along with code for
reproducing all results are publicly available.2

In summary, we introduce a new, efficiently computable, value-preserving state-abstraction class.
We offer a simple empirical demonstration that state abstractions do not necessarily simplify learning
while joint state–action abstractions do improve learning. We end highlighting a natural method of
deriving abstraction hierarchies, suggesting directions for future analysis and experiments.

2https://github.com/david-abel/rl_abstraction
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Appendix
We here present the proofs of theorems and the pseudocode for the algorithm to compute options.

Proofs

Theorem 2.1. Let P denote the space of all predicates on state pairs. For a given δ ∈ (0, 1],
any state abstraction of a type defined by a predicate in P can be computed such that states are

incorrectly aggregated only with probability (1 − δ)2 after m ≥ 2 ln( 2
δ )

δ2 samples R ∼ D from the
distribution.

Proof. For each sampled reward function Ri ∼ D, consider a graph Gi where each state si of the
MDP is mapped to a vertex vi. Let ei(v1, v2), denoting whether there is an edge between v1 and v2,
be true if and only if under reward functionRi the predicate p(s1, s2) is true.

Our goal is to compute a state abstraction of type φp that prescribes as many state-pair equiva-
lences as possible while only making costly mistakes with low probability. A costly mistake is one
such that, for the sampled reward function, there is a pair of states such that φ(s1) = φ(s2) but
¬ei(v1, v2).
After m sampled reward functions, we compute the empirical mean of each edge:

ê(v1, v2) =
1

m

m∑
i=1

ei(v1, v2). (5)

By the Hoeffding inequality, we bound the deviation of ê, letting ε = δ
2 :

Pr

(
|ê(a, b)− E [e(a, b)]| ≥ δ

2

)
≤ 2e(−mδ

2/2).

Let δ = 2 exp
(
−mδ2/2

)
. By algebra, m =

2 ln( 2
δ )

δ2 .

Now, consider the graph, Gê, formed by including those edges for which ê(v1, v2)− δ
2 ≥ 1− δ:

∀v1,v2 : êG(v1, v2) = 1

{
êi(v1, v2)−

δ

2
≥ 1− δ

}
.

The edges in Gê are those that occur with probability at least 1 − δ according to êi. Further, the
approximate edge weights êi are also accurate (within δ

2 ) with probability 1− δ. Thus, with proba-
bility (1−δ)2, our edge approximation is accurate and the edge is a high probability edge. Thus, we
do not make a costly mistake. Further, we label all other edges that are known with high probability.

Thus, we conclude that for m ≥ 2 ln( 2
δ )

δ2 sampled and solved MDPs, we can compute an abstraction
φp that only makes costly mistakes with low probability.

Theorem 2.2. Consider any transitive predicate on state pairs, p that takes computational com-
plexity cp to evaluate for a given state pair. The state abstraction type φp that induces the smallest
abstract state space can be computed3 in O(|S|2 · cp).

Proof. Let cp denote the computational complexity associated with computing the predicate p for
a given state pair. Consider the algorithm consisting of the following four rules for constructing
abstract clusters (which define the abstract states) using queries to each of the |S|2 state pairs. Let
(si, sj) denote the current state pair:

3Notably, the complexity of cp dictates the overall complexity of computing φp.
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1. If p(si, sj) is true, and neither state is in an abstract cluster yet, make a new cluster consist-
ing of these two states.

2. If p(si, sj) is true and only one of the states is already in a cluster, add the other state to the
existing cluster.

3. If p(si, sj) is true and both si and sj are in different cluster, merge the clusters.

4. If p(si, sj) is false, add each state not yet in a cluster to its own cluster.

Running this algorithm makes one query per state pair, of which there are |S|2. Thus the complexity
os O

(
|S|2 · cp

)
.

From steps 1-3, after iterating through the possible state pairs, there cannot exist a state pair (sx, sy)
such that p(sx, sy) is true but sx and sy are in different clusters. Further, by transitivity, when we
apply the cluster merge in step 3, we are guaranteed that every state pair in the resulting cluster
necessarily satisfies the predicate. Thus, we compute the smallest clustering definable by p.

Theorem 3.3. The φQ∗,d abstraction type is a subclass of φQ∗ε , with d = ε, and therefore, for a
single MDP:

V ∗(s0)− V πφQ∗,d (s0) ≤
2dRMAX

(1− γ)2
. (6)

Proof. For any two state-action pairs that satisfy the predicate φ∗d, we know by definition of the
predicate that for each action a, there exists a Qlower such that:

Qlower ≤ Q(s1, a) ≤ Qlower + d,

Qlower ≤ Q(s2, a) ≤ Qlower + d.

Therefore, for each action a:
|Q(s1, a)−Q(s2, a)| ≤ d. (7)

Therefore, φ∗Q,d is a subclass of φ∗Q,ε.

Theorem 3.4. A given state-action abstraction pair (φ, ω) induces a closed operation on MDPs.

Proof. Let Ras denote R(s, a), T as,s′ denote T (s, a, s′). Then, by the multi-time model introduced
by Sutton et al. [23]:

Rω(s, o) = Rπo(s)s +
∑
s′∈S

(1− βo(s′))T πo(s)s,s′ Rω(s
′, o)

T os,x =
∑
s′∈S

[
(1− β0(s′))T os′,x + β(s′)1s′=x

]
.

For some weighting function w(s), we define M ′:

• Sφ = {φ(s) : ∀s∈S}

• Aω = O

• Rosφ =
∑
s∈φ−1(sφ)

Rω(s, o)w(s)

• T osφ,s′φ =
∑
s∈φ−1(sφ)

∑
x∈φ−1(s′φ)

T os,xw(s)

Thus, the primary components of the MDP are well defined. Choice of γ will induce different value
differences between M and M ′ depending on the MDP structure as well as choice of φ and ω, and
is therefore left unspecified. Notably, the reward and transition models are Markov with the respect
to the provided options and abstract states, thereby forming a well defined MDP.
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Algorithm

We here also include the pseudocode for the algorithm used to compute options in experiments:

Algorithm 1 Directed Options

INPUT: D, φ, S0

OUTPUT: O

O = { }
for (sφ,1, sφ,2) ∈ Sφ × Sφ do . Compute clique.
I(s) , 1 {φ(s) = sφ,1}
β(s) , 1 {φ(s) = sφ,2} · (1− γ)
R1,2(s) , 1 {φ(s) = sφ,2}
s0 = S0.get start of cluster(sφ,1)
π∗1,2 = argmaxπ V

π
R1,2

(s0)

o1,2 = Option(I, β, π)
O.add(o1,2)

end for
for o ∈ O do . Remove redundant options.

if ¬∃s∈o.I : Pr(o.I(s′t) ∨ o.β(s′t) | s, o.π) = 1 then
O.remove(o)

end if
end for . Add optimal self loops.
forR ∈ D do

if ∃s∈φ−1(sφ),a∈A : R(s, a) > 0 then
I(s) , 1 {φ(s) = sφ}
β(s) , 1 {φ(s) 6= sφ} · (1− γ)
s0 = S0.get start of cluster(sφ)
π∗self = argmaxπ V

π
R(s0)

oself = Option(I, β, π∗self )
O.add(oself )

end if
end for
return O

The algorithm takes as input the distribution over reward functions, D, a state abstraction φ, and a
set of ground start states S0, which contains a start state for each cluster. The algorithm proceeds in
two stages:

1. Using the given state abstraction, compute the set of options that most expediently connects
the abstract states. To complete this step, there are two subprocesses:
(a) Compute every option that connects a pair of abstract states. That is, we form a clique

over the graph with nodes Sφ, and options for edges.
(b) Remove all options that are redundant. A redundant option is one such that, for every

ground state in the initiation set, the option’s policy transitions through some other
abstract state before arriving in the option’s terminal state.

2. Compute an option representing an optimal self-loop for each cluster.
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