
1

February 15th, 2016

Dave Abel

Unit 3: Algorithms

Telescope Science

2

“Computer Science is no more about computers than
astronomy is about telescopes.”

- Dijsktra (possibly)

What is Computer Science?

3

‣ Abstraction

‣ Problem Solving!

‣ Artistic, Creative.

- E.g. Digital Media, Electronic Music, Games, Animation.

‣ Science.

- E.g. Understand and model reality.

‣ World Changing!

Algorithms: Takeaway

4

‣ Definition: An algorithm is a recipe for solving a problem.

‣ Computer science is (loosely) the study of algorithms.

5

‣ Definition: An algorithm is a recipe for solving a problem.

‣ Computer science is (loosely) the study of algorithms.

‣ I.e., computer science is the study of automated methods
of solving problems.

Algorithms: Takeaway

6

‣ Definition: An algorithm is a recipe for solving a problem.

‣ Computer science is (loosely) the study of algorithms.

‣ I.e., computer science is the study of automated methods of
solving problems.

‣ Programs are ways of carrying out algorithms!!!

Algorithms: Takeaway

Outline

7

‣ Algorithms Overview

‣ Your first algorithm: Search

- Three flavors of search (Random, Linear, Binary)

‣ Growth Rates

‣ Your second algorithm: Sorting

- Two flavors of sorting (Random, Selection)

8

‣ A specification defines a problem

Problem Specification

9

‣ A specification defines a problem

‣ An algorithm solves a problem

Problem Specification

10

‣ A specification defines a problem

‣ An algorithm solves a problem

‣ INPUT: A deck of cards

Problem Specification

Problem Specification

11

‣ A specification defines a problem

‣ An algorithm solves a problem

‣ INPUT: A deck of cards

‣ OUTPUT: True if the input desk is a complete deck,
False otherwise.

12

‣ INPUT: A deck of cards

‣ OUTPUT: True if the input desk is a complete deck,
False otherwise.

…

Problem Specification

Problem Specification

13

‣ INPUT: Some stuff!

‣ OUTPUT: Information about the stuff!

Problem Specification Examples

14

‣ INPUT: Two numbers, X and Y.

‣ OUTPUT: A single number, Z, such that Z = X + Y.

15

‣ INPUT: Some Doctor’s knowledge about cancer.

‣ OUTPUT: Cure to cancer

Problem Specification Examples

16

‣ INPUT: The Internet

‣ OUTPUT: The winner of the 2016 election

Problem Specification Examples

17

‣ INPUT: Map of solar system, description of physical
laws, summary of current technology.

‣ OUTPUT: A method for colonizing Mars.

Problem Specification Examples

18

‣ INPUT: Data from the stock market.

‣ OUTPUT: Correct predictions about the market.

Problem Specification Examples

19

‣ INPUT: A bunch of songs from the last 1000 years.

‣ OUTPUT: A new song, guaranteed to be loved.

Problem Specification Examples

20

‣ INPUT: a number.

‣ OUTPUT: a 0 or a 1, each with equal chance.

Problem Specification Examples

Problem Specification:
Abstraction

21

‣ All of these specifications are extremely nice! But with a
computer, as with logic, we need to operate on well
defined things.

‣ I.e. a computer would ask, “what’s a stock? what’s
mars?”

‣ So, our algorithms are defined with respect to well
defined things, like lists, numbers, etc.! We abstract
away the details.

‣ Then we model reality using these abstractions.

Problem Specification

22

Algorithms:

23

(1) Which of these problems are solvable?

Algorithms:

24

(1) What problems are solvable?

(2) How can we characterize the difficulty of a problem?

Our First Problem: Search

25

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

Our First Problem: Search

26

‣ Input:

- a list of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

Search Algorithm #1

27

‣ Random search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for (“Snozzberry”),
report True!

3. Otherwise, go back to step 1.

Clicker Question!

28

‣ Random search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to step 1.

‣ Q: Does random search solve the search problem?

Search Problem

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

29

‣ Random search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), return True!

3. Otherwise, go back to step 1.

‣ Q: Does random search solve the search problem?
Search Problem

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

[A] Yes! [B] No! [C] I have no idea…

Clicker Question!

30

‣ Random search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), return True!

3. Otherwise, go back to step 1.

‣ Q: Does random search solve the search problem?
Search Problem

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

[A] Yes! [B] No! [C] I have no idea…

Clicker Answer!

31

‣ Random search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), return True!

3. Otherwise, go back to step 1.

‣ Q: Does random search solve the search problem?
Search Problem

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

[A] Yes! [B] No! [C] I have no idea…

Q: What if the item is not in
“Basket”?

Clicker Answer!

Search Algorithm #2

32

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2, and
so on)

3. If at any point the index we’re looking at in the list
contains the item, report True!

4. If we get to the end of the list and haven’t seen it,
report False!

Search Algorithm #2

33

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If at any point the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Ask: is “lime” in the list?

Search Algorithm #2

34

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. If at any point the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Ask: is “lime” in the list?

Search Algorithm #2

35

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. If at any point the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Ask: is “lime” in the list?

Search Algorithm #2

36

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. If at any point the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Ask: is “lime” in the list?

Search Algorithm #2

37

‣ Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If at any point the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Ask: is “lime” in the list?

Search Algorithm #2

38

Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2, and so on)

3. If at any point the index we’re looking at in the list contains the
item, report True!

4. If we get to the end of the list and haven’t seen it, report False!

Q: Does Linear Search solve the Search Problem?

A: Yes! For any list, for any item, linear search
will solve Search!

Search Problem

‣ Input:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

‣ Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket”

Search Algorithm #3

39

‣ Binary Search: assumes a sorted list

‣ Idea: if we assume the list is sorted, surely finding
our item is easier!

You Try It

40

Q: Is 16 in the list?

You Try It

41

Q: Is 91 in the list?

Which Was Easier?

42
Q: Is 91 in the list?

Q: Is 16 in the list?

Search Algorithm #3

43

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less
than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

44

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Binary Search

45

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

Binary Search

46

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

Binary Search

47

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

Binary Search

48

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

3 < 5

Binary Search

49

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

3 < 5

Binary Search

50

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

3 < 5

Because list is sorted, if our number is
in the list, it has to be to the left of 5!!!

Binary Search

51

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

3 < 5

Binary Search

52

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: is 3 in the list?

Binary Search

53

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

54

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

55

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

56

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

57

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

58

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

59

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

60

‣ Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

Binary Search

61

1 3 4 5 7 8 9

Q: Is 6 in the list?

Another way of thinking about it:

Linear Search = check every
item in the worst case!

Binary Search = uses
sorted property to avoid

checking every item

Clicker Question!

62

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

Clicker Question!

63

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Clicker Question!

64

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Clicker Question!

65

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Clicker Question!

66

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Clicker Question!

67

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Clicker Question!

68

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Clicker Question!

69

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 3

Clicker Question!

70

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 4

Clicker Question!

71

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 4

Properties of Algorithms

72

1. Correctness: does the algorithm satisfy the
problem specification?

2. Growth Rate: how many “primitive” operations
must the computer execute to solve the problem
for various sized inputs?

73

‣ Linear Search vs. Binary Search

‣ Well we already said that Binary is faster, but by
how much?

Growth Rates

74

‣ Linear Search vs. Binary Search

‣ Well we already said that Binary is faster, but by
how much?

‣ We measure what is called the growth rate of an
algorithm: how many operations do we need in order
to solve the problem?

Q: Is 11 in the list?

Growth Rates

Linear:

75

Q: Is 11 in the list?

Operations: 1

Linear:

76

Q: Is 11 in the list?

Operations: 1

Linear:

77

Q: Is 95 in the list?

Operations: 1

Linear:

78

Q: Is 95 in the list?

Operations: 2

Linear:

79

Q: Is 95 in the list?

Operations: 3

Linear:

80

Q: Is 95 in the list?

Operations: 13

More Generally

81

‣ Growth Rate is always considered with respect to the worst
possible case

‣ So the growth rate of Linear Search is:

More Generally

82

‣ Growth Rate is always considered with respect to the worst
possible case

‣ So the growth rate of Linear Search is:

- For a size 13 list, we might need to look at all 13 items…

- For a size 20 list, we might need to look at all 20 items…

More Generally

83

‣ Growth Rate is always considered with respect to the worst
possible case

‣ So the growth rate of Linear Search is:

- For a size 13 list, we might need to look at all 13 items…

- For a size 20 list, we might need to look at all 20 items…

- For a size N list, we might need to look at all N items…

More Generally

84

‣ Growth Rate is always considered with respect to the worst
possible case

‣ Binary Search:

- Can repeatedly cut the list in half…

- Worst case we need to cut it in half how many times?

- Well if we have a length 16 list… (16 -> 8 -> 4 -> 2 -> 1)

- For a length N list, generally, this is log(N)

85

‣ Linear Search vs. Binary Search

‣ For an arbitrary list of length N:

- Linear Search will do N things in the worst case

- Binary Search will do log(N) things in the worst
case

Growth Rates

86

Log vs Linear

0

10

20

30

40

N

log(N) N

87

Log vs Linear

N = 10000 log(N) = 13.287

88

Log vs Linear

N = 10000 log(N) = 13.287

(We strongly prefer Binary Search…)

89

Log vs Linear

N = 10000 log(N) = 13.287

(We strongly prefer Binary Search…)

(But then our lists need to be sorted!)

Our Second Problem: Sorting

90

Problem Specification

‣ Input:

- a collection of orderable objects, call it “Basket”

‣ Output:

- “Basket”, where each item is in order.

Our Second Problem: Sorting

91

Problem Specification

‣ Input:

- a collection of orderable objects, call it “Basket”

‣ Output:

- “Basket”, where each item is in order.

Sort Solution #1

92

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Sort Solution #1

93

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Let’s take a look!

https://scratch.mit.edu/projects/97902326/#editor

Sort Suggestions?

94

Any proposals?

Sort Solution #2

95

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

96

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

97

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

98

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

99

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

100

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

101

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

102

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

103

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

104

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Sort Solution #2

105

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat….

Reflection

106

‣ Definition: An algorithm is a recipe for solving a problem.

‣ Computer science is (loosely) the study of algorithms.

‣ Algorithms are correct when they solve a specific problem
specification

‣ Search!

‣ Sort!

‣ Worst case consideration —> Growth Rate! Some algorithms
are faster than others for solving the same problem.

