Unit 3: Algorithms

Dave Abel

February 15th, 2016

Telescope Science

“Computer Science is no more about computers than
astronomy Is about telescopes.”
- Dijsktra (possibly)

2

What is Computer Science”

» Abstraction

» Problem Solving!

»Artistic, Creative.

E.g. Digital Media, Electronic Music, Games, Animation.

» Science.

E.g. Understand and model reality. |-t

ol World Changing!

Algorithms: lakeaway

- Definition: An algorithm is a recipe for solving a problem.

- Computer science is (loosely) the study of algorithms.

Algorithms: lakeaway

Definition: An algorithm is a recipe for solving a problem.
- Computer science is (loosely) the study of algorithms.

|.e., computer science Is the study of automated methods
of solving problems.

Algorithms: lakeaway

- Definition: An algorithm is a recipe for solving a problem.

- Computer science is (loosely) the study of algorithms.

|.e., computer science is the study of automated methods of
solving problems.

== Programs are ways of carrying out algorithms!!!

6

Outline

» Algorithms Overview
» Your first algorithm: Search
- Three flavors of search (Random, Linear, Binary)
» Growth Rates
» Your second algorithm: Sorting

- Two flavors of sorting (Random, Selection)

v

Problem Specitication

- A specification defines a problem

Problem Specitication

- A specification defines a problem

- An algorithm solves a problem

Problem Specitication

- A specification defines a problem

- An algorithm solves a problem \ & P

» INPUT: A deck of cards

10

Problem Specitication

- A specification defines a problem
- An algorithm solves a problem
» INPUT: A deck of cards

OUTPUT: True if the input desk is a complete deck,
False otherwise.

taa|iealleaallaall faalieasfaa|laall

..’
*s
-

b
-
>

.d
*y
-
-
»

+ X laa|les]l oy | o s . ! %
N s [laalla% s | 208 :’: | * s [[ss8s] sa| 0|53 ﬂ
- » » * -
AR IRACIRACIRAL IRANIRALIRAZ IR | D v vl vell|vel vl v weol| ooy I
o |loa|laa|les]lonlanlan|len]l 5 % F 5 W N i
s A 5 R L et o ! . ieallesifanlen]lesRee Bogy | Eowr
e o |[oe]/a%| ale| 305 v ‘ - o |[00 a7 a0 5| S0
- - - - - - - - 'S
AR IAACIRAL IRAL IAALIRAL IRAL IRAL L |1 . vl vel vl ool wel o 3 -
[i u [f = 1) ; : . i . .
v |[fvv (Lvew |Cve %Y :'.' ::: -::) | T v |lve|lve|lee Qv'v lvw "v'v vy | B -
v v |[|ev|lvefoe| W22 | M e ool e ([e™
o aalllaadiiaadiiaanll aall aalll aall B O C ol aall aallaasaa ool | oty K KT !
[] b i [i)] { R, 5 ; : : - : . . .
M | | SAE | 38 | OE 1308 |98 ':0: g - ”L" R RO OO DR RO | DR % Ko
B « R IR I B \ ¢ IR
. . SEIERIIEXRA J| N IR RN IO LM
’ N p A
AR IRALS IRAL |RAY BT IRAL IR L L IR I I I ICH IR HIR L "ee i) o B T

Problem Specification

» INPUT: A deck of cards

» QUTPUT: True if the input desk is a complete deck,
False otherwise.

12

Problem Specitication

» INPUT: Some stuff!

» QUTPUT: Information about the stuff!

13

Problem Specification Examples

» INPUT: Two numbers, X and Y.

» QUTPUT: A single number, Z, such that Z = X + Y.

14

Problem Specification Examples

» INPUT: Some Doctor’s knowledge about cancer.

» QUTPUT: Cure to cancer

15

Problem Specification Examples

» INPUT: The Internet

» QUTPUIT: The winner of the 2016 election

16

Problem Specification Examples

» INPUT: Map of solar system, description of physical
laws, summary of current technology.

» QUTPUT: A method for colonizing Mars.

17

Problem Specification Examples

» INPUT: Data from the stock market.

» OUTPUI: Correct predictions about the market.

18

Problem Specification Examples

» INPUT: A bunch of songs from the last 1000 years.

» QUTPUT: A new song, guaranteed to be loved.

19

Problem Specification Examples

» INPUT: a number.

» QUTPUI: a 0ora 1, each with equal chance.

20

Problem Specitication:
Abstraction

All of these specifications are extremely nice! But with a
computer, as with logic, we need to operate on well
defined things.

|.e. a computer would ask, “what’s a stock”? what's
mars”?”

S0, our algorithms are defined with respect to well
defined things, like lists, numbers, etc.! We abstract
away the detalls.

Then we model reality using these abstractions.

21

Problem Specitication

Dark Energy

Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs Galaxies, Planets, etc

Inflation

I
. ..’1\‘1 -
=) %
/¢ J;: S Quantum
o Fluctuations
Unfolded Folded

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

22

Algorithms;:

WMAP

I
. ..’1'\‘1 -
=) %
’ <. Quantum
b Fluctuations
Unfolded Folded

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

23

Algorithms:

',"* ‘v'r
A . s
f ::> h’ ?! [:> ™. ::>

-:‘Q - Fluctuations

R
’\Q“Unfolded ’ s Folded -
1st Stars

about 400 million yrs.

Big Bang Expansion

13.7 billion years

24

Our First Problem: Search

» [nput:

- a collection of objects, call it “Basket”

- a specific object, call it “Snozzberry”

» Qutput:

- True If “Snozzberry” is in “Basket”.

- False if “sSnozzberry” is not in “Basket”

25

Our First Problem: Search

» [nput:
- a list of objects, call it "Basket”

- a specific object, call it “Snozzberry”

» Qutput:

- True If “Snozzberry” is in “Basket”.

- False if “sSnozzberry” is not in “Basket”

20

Search Algorithm #1

- Random search
1. Pick a random item from “Basket”.

2. 1t it's the item we're looking for (“Snozzberry”),
report True!

3. Otherwise, go back to step 1.

27

Clicker Question!

- Q: Does random search solve the search problem?

Search Problem

Random search ' Input:

1. Pick a random item from “Basket”. - a collection of objects, call it “Basket”

2. If it's the item we’re looking for .- aspecific object, call it “Snozzberry”
“ " I 1
(“Snozzberry”), report True! . Output

3. Otherwise, go back to step 1.

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket” :

28

Clicker Question!

- Q: Does random search solve the search problem?

Search Problem

.- Random search _
. . .) b Input:
1. Pick a random item from “Basket”. : :
- a collection of objects, call it “Basket”
2. If it's the item we’re looking for ; :
(“Snozzberry”), return True! - a specific object, call it “Snozzberry”

3. Otherwise, go back to step 1. Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket” :

[A] Yes! [B] No! [C] | have no idea...

29

Clicker Answer!

- Q: Does random search solve the search problem?

Search Problem

.- Random search _
. . .) b Input:
1. Pick a random item from “Basket”. : :
- a collection of objects, call it “Basket”
2. If it's the item we’re looking for ; :
(“Snozzberry”), return True! - a specific object, call it “Snozzberry”

3. Otherwise, go back to step 1. Output:

- True if “Snozzberry” is in “Basket”.

- False if “Snozzberry” is not in “Basket” :

[A] Yes! [B] No! [C] | have no idea...

30

Clicker Answer!

- Q: Does random search solve the search problem?

. Search Problem

.- Random search

. . Input:
1. Pick a random item from “Basket”. :

- a collection of objects, call it “Basket”
2. If it's the item we’re looking for : : :
(“Snozzberry”), return True! - a specific object, call it “Snozzberry”

3. Otherwise, go back to step 1. Output:

Q: What lf the ltem iS nOt in i - False if “Snozzberry” is not in “Basket”g
“BaSket”? ...

[A] Yes! [B] No! [C] | have no idea...

- True if “Snozzberry” is in “Basket”.

31

Search Algorithm #2

- Linear search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2, and
SO ON)

3. It at any point the index we're looking at in the list
contains the item, report True!

4. It we get to the end of the list and haven't seen it,
report Falsel

32

Search Algorithm #2

- Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. It at any point the index we're looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven't
seen it, report False!

Ask: is “lime” In the list?

33

r

basket

1 K]0
72| pineapple

<N strawberry

H

ﬁlgllilll

N grapes
N orange

N

N starfruit

o

Lt length: 9

Search Algorithm #2

- Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. It at any point the index we're looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven't
seen it, report False!

Ask: is “lime” In the list?

34

1
2
3

H

5
6

N

8

o

basket

| apple
pineapple

strawberry

grapes
orange

starfruit

length: 9

\

Search Algorithm #2

- Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. It at any point the index we're looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven't
seen it, report False!

Ask: is “lime” In the list?

35

basket

Search Algorithm #2

- Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then
index 2, and so on)

3. It at any point the index we're looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven't
seen it, report False!

Ask: is “lime” In the list?

36

Search Algorithm #2

- Linear search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If at any point the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven't
seen it, report False!

Ask: is “lime” In the list?

37

Search Problem

Linear search : E
; o Input:

1. Put the items from “Basket” in a list :
- a collection of objects, call it “Basket” :

2. Check each item in turn (index 1, then index 2, and so on)
. - a specific object, call it “Snozzberry”
3. If at any point the index we're looking at in the list contains the P) y

item, report True! 5 :
_ " E > Output:
4. If we get to the end of the list and haven't seen it, report False!
.. E) True |f “Snozzberryn |S Iﬂ “BaSket”

- False if “Snozzberry” is not in “Basket”

Q: Does Linear Search solve the Search Problem?

A: Yes! For any list, for any item, linear search
will solve Search!

38

Search Algorithm #3

- Binary Search: assumes a sorted list

»|dea: It we assume the list is sorted, surely finding
our item Is easier!

39

You Iry It

™

1

numbers

- D = o
W N =2 O © 0 N O O & N -

~

-

length: 13 Y,

Q: Is 16 in the list?

r

40

You Iry It

numbers

© 00 N O OO A O N -

==k R
w N - O

+

length: 13 4

Q: Is 91 in the list?

41

Which Was Easier?

D

-
©C © ® N O O &~ O N =

=k =h =k
W N -

(+

numbers

length: 13

J

.

Q: Is 16 in the list?

42

\

numbers

© 0O N O OO A QO N -

-k = b
N = O

Y
w

—

length: 13

o

.

Q: Is 91 in the list?

Search Algorithm #3

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less
than the middle number?

4. |f greater, search the right half.

5. If less, search the left half.

43

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

44

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: is 3 in the list?

45

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: is 3 in the list?

46

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: is 3 in the list?

47

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle

number?
4. If greater, search the right half. 3<95

5. If less, search the left half.

Q: is 3 in the list?

48

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle

number?
4. If greater, search the right half. 3<95

5. If less, search the left half.

Q: is 3 in the list?

49

Binary Search

:- Binary Search: assumes a sorted list

Because list Is sorted, if our number is
N the list, it has to be to the left of 51!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half. 3 <9

5. If less, search the left half.

Q: is 3 in the list?

50

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle

number?
4. If greater, search the right half. 3<95

5. If less, search the left half.

Q: is 3 in the list?

51

Binary Search

.- Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: is 3 in the list?

52

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: Is 6 in the list?

53

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: Is 6 in the list?

o4

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

Q: Is 6 in the list?

95

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

op
Ik
h
~
00

Q: Is 6 in the list?

56

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

op
Ik
h
~
Qo

Q: Is 6 in the list?

S/

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half. 6 < 8

5. If less, search the left half.

op
Ik
h
~
Qo

Q: Is 6 in the list?

58

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half. 6 < 8

5. If less, search the left half.

op

Ik
h
~

Q: Is 6 in the list?

59

Binary Search

- Binary Search: assumes a sorted list
1. Check the middle of the list
2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle
number?

4. If greater, search the right half.

5. If less, search the left half.

op
Ik
h
~

Q: Is 6 in the list?

60

Binary Search

Another way of thinking about it:

Binary Search = uses
sorted property to avoid
checking every item

Linear Search = check every
item In the worst case!

Q: Is 6 in the list?

61

Clicker Question!

Q: How many items will Binary Search
iInspect when searching for 67

62

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

10

63

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

10

64

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

10

Inspections: 1

65

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

Inspections: 1

66

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

Inspections: 2

67

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

Inspections: 2

68

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

Inspections: 3

69

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

Inspections: 4

70

Clicker Question!

Q: How many items will Binary Search
inspect when searching for 67

Al1[B]2 [C]3 [D]4 [E]S

o
I
an

Inspections: 4

/1

Properties of Algorithms

1. Correctness: does the algorithm satisty the
problem specification?

2. Growth Rate: how many “primitive” operations
must the computer execute to solve the problem
for various sized inputs?

/2

Growth Rates

> Linear Search vs. Binary Search

» Well we already said that Binary is faster, but by
how much?

mbers

=
c
J

B O R
W N = O © 0o N O O A W N -

length: 13

N\

\l
w

Growth Rates

> Linear Search vs. Binary Search

» Well we already said that Binary is faster, but by
how much?

» We measure what is called the growth rate of an
algorithm: how many operations do we need in order
to solve the problem?

mmmmm

Q: Is 11 in the list?

(T A o o oo 7

W N =2 O © N O O B N =
N

g

=

w

DN J

74

| Inear:

Q:Is 11 in the list?

Operations: 1

75

>
'
J

i 0 e
W N - O © ®©® N O o & W

Iength: 13

N\

| Inear:

Q:Is 11 in the list?

Operations: 1

v

/6

>
'
J

i 0 e
W N - O © ®©® N O o & W

Iength: 13

N\

| Inear:

Q: Is 95 in the list?

Operations: 1

77

>
'
J

i 0 e
W N - O © ®©® N O o & W

Iength: 13

N\

| Inear:

3
8
@

Q: Is 95 in the list?

1

N A
2

Operations: 2

-

i = e
W N - O © 0 N O O

Iength: 13

N\

/8

| Inear:

3
8
@

Q: Is 95 in the list?

>
=
c

J

Operations: 3

79

| Inear:

Q: Is 95 in the list?

Operations: 13

80

- R
- O © 0O N O O Hh WO N =

3
8
@

—

r+|

N\

Iength: 13

=
c
J

More Generally

» Growth Rate is always considered with respect to the worst
possible case

» S0 the growth rate of Linear Search is:

81

More Generally

» Growth Rate is always considered with respect to the worst
possible case

» S0 the growth rate of Linear Search is:
For a size 13 list, we might need to look at all 13 items...

For a size 20 list, we might need to look at all 20 items...

82

More Generally

» Growth Rate is always considered with respect to the worst
possible case

» S0 the growth rate of Linear Search is:
For a size 13 list, we might need to look at all 13 items...
For a size 20 list, we might need to look at all 20 items...

For a size N list, we might need to look at all N items...

83

More Generally

» Growth Rate is always considered with respect to the worst
possible case

» Binary Search:
Can repeatedly cut the list in half...
Worst case we need to cut it in halt how many times?
Well it we have a length 16 list... (16 ->8 ->4 -> 2 -> 1)

For a length N list, generally, this is log(N)

384

Growth Rates

> Linear Search vs. Binary Search
» For an arbitrary list of length N:
- Linear Search will do N things in the worst case

- Binary Search will do log(N) things in the worst
case

mmmmm

r+ e 0

W N =2 O O ® N OO A WN =
N

d

=

w

N\ J

85

| 0g vs Linear

40
— log(N) — N
30

20

10

.0g vs Linear

N = 10000 log(N) = 13.287

37

.0g vs Linear

N = 10000 log(N) = 13.287

(We strongly prefer Binary Search...)

88

| 0g vs Linear

(But then our lists need to be sorted!)
N = 10000 log(N) = 13.287

(We strongly prefer Binary Search...)

89

Our Second Problem: Sorting

Problem Specification
» [nput:

- a collection of orderable objects, call it “Basket”
» Qutput:

“‘Basket”, where each item Is In order.

90

Our Second Problem: Sorting

Problem Specification
» Input:
- a collection of orderable objects, call it “Basket”
» Qutput:

“‘Basket”, where each item is in order.

(D
basket
1 ,
2 :
3)
Jlime 4
; 6
74| grapefruit 7
: "
Ncocont 0
o length: 9 y L

91

Sort Solution #1

Random Sort

1. Shuffle the list up randomly (like shuftling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it Is not, repeat from step 1.

92

Sort Solution #1

Random Sort

1. Shuffle the list up randomly (like shuftling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it Is not, repeat from step 1.

| et’s take a look!

93

https://scratch.mit.edu/projects/97902326/#editor

Sort Suggestions?

Any proposals?

Sort Solution #2

Selection Sort

1. “Select” the smallest item in the list.
2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

95

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

¢ o 3 ¢ o ¢ o &
° o
¢ ¢ ¢ ! o ¢ ¢

96

N

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

e 0 3 ¢ ¢ ¢ 76 ¢
® ¢ ¢ o
M ¢ ¢ ¢ ¢ ¢

97

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

e 0 3 ¢ ¢ ¢ 76 ¢
° ¢ ¢ o
I M ¢ ¢ ¢ ¢ ¢

98

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

e o S ¢ °¢ ¢ T e
° X
¢ o L I ¢ ¢ o

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

¢ ; ¢ o ¢ ¢ 0

100

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

I ¢ o ¢ ¢ 0

101

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

S ¢ e o ¢ ¢ T e
° ¢
: ¢ ! ¢ o ¢ o] o

©

©

102

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

¢ S ¢ ¢ o ¢ ¢
° ¢
: ¢ ! ¢ o X

103

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

3 ¢ e 0 5¢
o o
: L I I o

104

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.
2. Put it at the beginning.
3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat....

S ¢ e 0 6 ¢ S
° o o
2 ¢ ¢ ¢ o ¢ o o

105

Reflection

Definition: An algorithm is a recipe for solving a problem.
Computer science is (loosely) the study of algorithms.

Algorithms are correct when they solve a specific problem
specification

Search!
Sort!

Worst case consideration —> Growth Rate! Some algorithms
are faster than others for solving the same problem.

106

