Unit 1: AND(Logic,Gates)

Dave Abel

February 3rd, 2016

Today's Takeaway

Monday's claim: Computers are doing logic!

Today: how they do logic! (physically!)

Outline

- Logic review
 - Boolean Sentences
 - Logical Functions
 - Truth Tables
- Gates

Still Need: Reasoning

- Variables that stand for sentences: P, Q, R, S
- Example:
 - If the snozzberry is a berry, then it is a fruit.
 - The snozzberry is a berry.
 - Therefore, the snozzberry is a fruit.

- Variables that stand for sentences: P, Q, R, S
- Example:
 - If the snozzberry is a berry, then it is a fruit.
 - The snozzberry is a berry.
 - Therefore, the snozzberry is a fruit.

- Variables that stand for sentences: P, Q, R, S
- Example:

- Variables that stand for sentences: P, Q, R, S
- Example:

True for all sentences *P*,

All sentences Q!

- Variables that stand for sentences: P, Q, R, S
- Example:

- Variables that stand for sentences: P, Q, R, S
- We call sentences that can be True or False "Boolean".
- So: *P, Q, R, S,* etc., will be called **Boolean Sentences.**

Logic: Boolean Functions

- ▶ We get three functions: AND, OR, NOT
 - Each function takes as input one or more Boolean Sentences (*P*, *Q*, etc.)
 - Outputs a Boolean value (True, False)

Logic: Boolean Functions

AND(P,Q)

Outputs True if **both** *P* and *Q* are True.

OR(P,Q)

Outputs True if at least one of P or Q is True.

NOT(P)

Outputs True if P is False. (Just flips it!)

Truth Tables: NOT

Truth Tables: AND

Ρ	Q	AND(Р	Q)
Т	Τ	Т	Т	Т
Т	F	F	T	F
F	Τ	F	F	Τ
F	F	F	F	F

Truth Tables: OR

Р	Q	OR(Р	Q)
Т	Т	Т	Т	Т
Τ	F	Т	Т	F
F	Т	Т	F	Т
F	F	F	F	F

Logic: Composition

- Boolean Sentences represented with a letter are called **Atomic Sentences** (e.g. *P, Q, R, S,* etc.)
- But since *AND*(-,-), *OR*(-,-), and *NOT*(-), also output Boolean Values, they are *also Boolean Sentences*.
- For example:
 - AND(NOT(P),Q)
 - OR(AND(P,Q),NOT(R))

P	Q	OR(NOT(<i>Q</i>),	P)
Т	Τ				
Τ	F				
F	Т				
F	F				

P	Q	OR(NOT(<i>Q</i>),	P)
Т	Т			Т	Т
Т	F			F	Т
F	Т			Т	F
F	F			F	F

P	Q	OR(NOT(<i>Q</i>),	P)
Т	Т		F	Τ	Т
Τ	F		Т	F	Т
F	Т		F	Τ	F
F	F		Т	F	F

Ρ	Q	OR(NOT(<i>Q</i>),	P)
Т	Т	Т	F	Т	Т
Т	F	T	Т	F	Т
F	Τ	F	F	Τ	F
F	F	Т	Т	F	F

0

When is it okay to attend a rated R movie?

When is it okay to attend a rated R movie?

P: person X is 17 or older

Q: person X is accompanied by a parent/adult guardian

When is it okay to attend a rated R movie?

P: person X is 17 or older

Q: person X is accompanied by a parent/adult guardian

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.

P = order is above \$60

Q = ordered a premium item

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.

P = order is above \$60

Q = ordered a premium item

OR(P,NOT(Q))

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

Previous example: *OR(P,NOT(Q))*

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

AND(R,NOT(P))

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

AND(R,NOT(P))

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

OR(P, NOT(Q))

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

AND(R,NOT(P))

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

OR(P,NOT(Q))

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

- 1. You receive free shipping on orders above \$60.
- 2. You receive free shipping if you do not order any premium items.
- 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.

P = order is above \$60

Q = ordered a premium item

R = shipped to alabama

OR(OR(P,NOT(Q)),AND(R,NOT(P))

OR(P,Q)

AND(P,Q)

P or Q

P and Q

and

NOT(P)

not P

not

Logical Rules!

Why shouldn't we do this:

P or Q and R

Logical Rules!

Why shouldn't we do this:

P or Q and R

 $(P \text{ or } Q) \text{ and } R \qquad P \text{ or } (Q \text{ and } R)$

Logical Rules!

Why shouldn't we do this:

Por Q and R

(P or Q) and R

P or (Q and R)

AND(R,OR(P,Q)) OR(P,AND(R,Q))

Q: What rule goes in the ???

Q: What rule goes in the ???

- 1. Make a rule for each "True"
- 2. OR them together

Q: What rule goes in the ???

Strategy:

- 1. Make a rule for each "True"
- 2. OR them together

NOT(P) or P

Q: What rule goes in the ???

Strategy:

- 1. Make a rule for each "True"
- 2. OR them together

OR(NOT(P), P)

Р	Q	???
Т	Т	F
Т	F	Т
F	Т	F
F	F	Т

Q: What rule goes in the ???

- 1. Make a rule for each "True"
- 2. OR them together

Р	Q	???
Т	Т	F
Т	F	T
F	Т	F
F	F	Т

Q: What rule goes in the ???

AND(P,NOT(Q))

AND(NOT(P), NOT(Q))

- 1. Make a rule for each "True"
- 2. OR them together

Р	Q	???
Т	Т	F
Т	F	T
F	Т	F
F	F	Т

Q: What rule goes in the ???

AND(P,NOT(Q))

or

AND(NOT(P), NOT(Q))

- 1. Make a rule for each "True"
- 2. OR them together

Р	Q	???
Т	Т	F
Т	F	T
F	Т	F
F	F	Т

Q: What rule goes in the ???

OR(AND(P,NOT(Q)),AND(NOT(P),NOT(Q)))

- 1. Make a rule for each "True"
- 2. OR them together

Р	Q	???
Т	Т	F
Т	F	T
F	Т	F
F	F	Т

Q: What rule goes in the ???

OR(AND(P,NOT(Q)),AND(NOT(P),NOT(Q)))

Also: NOT(Q)

- 1. Make a rule for each "True"
- 2. OR them together

Q: Can we write down every possible logical formula in this way?

Q: Can we write down every possible logical formula in this way?

A: YES!

Q: Can we write down every possible logical formula in this way?

A: YES!

- 1. Make a rule for each "True"
- 2. OR them together

Q: Can we write down every possible logical formula in this way?

A: YES!

Strategy:

- 1. Make a rule for each "True"
- 2. OR them together

Q: What if we only had AND?

Q: What if we only had AND?

A: No! Can't do this one:

Р	???
Т	F
F	T

Idea: with a certain set of logical functions, we can represent all possible logical formulas!

If P, then Q

If P, then Q

$$P \longrightarrow Q$$

Q: Can we represent this as a logical formula?

<i>P</i>	Q	P	-	Q
Т	Т	Т		Т
Т	F	Т		F
F	Т	F		Τ
F	F	F		F

<i>P</i>	Q	P		Q
Т	Т	Т		Т
Т	F	Т		F
F	Т	F		Т
F	F	F		F

<i>P</i>	Q	P		Q
Т	Т	Т	Т	Т
Т	F	Т		F
F	Т	F		Т
F	F	F		F

P	Q	P		Q
Т	Т	Т	Т	Τ
Т	F	Т		F
F	Т	F		Τ
F	F	F		F

P	Q	P		Q
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Τ	F		Τ
F	F	F		F

Р	Q	P		Q
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	F		Т
F	F	F		F

P	Q	P		Q
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	F		F

Р	Q	P	-	Q
Т	Т	Т	Т	Т
Т	F	Τ	F	F
F	Т	F	Т	Τ
F	F	F		F

Р	Q	P		Q
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	F	Т	F

P	Q	P	—	Q
Т	Т	Т	Т	Т
Т	F	Τ	F	F
F	Т	F	Т	Τ
F	F	F	Т	F

- 1. Make a rule for each "True
- 2. OR them together

Р	Q	Р	—	Q
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	F	Т	F

- 1. Make a rule for each "True
- 2. OR them together

	P	Q	Р	→	Q
AND(P,Q)	Т	Т	Т	Т	Т
AND(NOT(P),Q)	Т	F	Т	F	F
	F	Т	F	Т	Т
AND(NOT(P),NOT(Q))	F	F	F	Т	F

- 1. Make a rule for each "True
- OR them together

$$AND(P,Q)$$
 or $AND(NOT(P),Q)$ or

Logic

Onward! Gates

Р	NOT(P)	P	NOT(P)
Т	F	 1	0
F	T	0	1

Q: What is this, physically?

Now: The Transistor

Takes in electric current:

- Amplifies it! (ON, 1)

- Or not... (OFF, 0)

Low voltage pulse of electricity = 0 High voltage pulse of electricity = 1

Gates: AND

P	Q	AND(Р	Q)
1	1	1	1	1
1	0	0	1	0
0	1	0	0	1
0	0	0	0	0

Gates: AND

P	Q	AND(Р	Q)
1	1	1	1	1
1	0	0	1	0
0	1	0	0	1
0	0	0	0	0

Gates: AND

P	Q	AND(Р	Q)
1	1	1	1	1
1	0	0	1	0
0	1	0	0	1
0	0	0	0	0

Gates: OR

P	Q	OR(Р	Q)
1	1	1	1	1
1	0	1	1	0
0	1	1	0	1
0	0	0	0	0

Gates: OR

P	Q	OR(Р	Q)
1	1	1	1	1
1	0	1	1	0
0	1	1	0	1
0	0	0	0	0

Try writing down the gate structure for the following Boolean sentence:

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q)) P AND(P,Q) AND(P,Q) OR(P,Q) OR(P,Q) OR(P,Q)

89

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q))

A:

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q))

A:

Try writing down the gate structure for the following Boolean sentence:

P	Q	OR(Р	NOT(Q)
Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Р	Q	OR(Р	NOT(Q)
Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Р	Q	OR(Р	NOT(Q)
Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Р	Q	OR(Р	NOT(Q)
Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F

P	Q	OR(Р	NOT(Q)
Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F

Truth Table to Formula

Idea: with a certain set of logical functions, we can represent all possible logical formulas!

Truth Table to Gate

Idea: with a certain set of logical functions gates, we can represent all possible logical formulas!

What Else Could be a Gate?

Could It Work?

- Michael's domino OR gate: 24 dominoes
- The first pentium processor had 3.3 Mill transistors, or roughly 800k gates.
- So we need around 20 Mill dominoes
- World record for domino topple: 4.5 Mill
- Pentium: computes 60 Mill times a second

Dominoes? Takes awhile to set up...

Reflection

- Logic review
- Gates
 - AND, OR, NOT gates
 - Composition of gates
 - Can represent all possible logical formulas as gates
 - Transistors and friends are just gates
- Up Next: Turning gates into simple programs!