Research

Dave Abel

April 25th, 2016

Final Exam

- Similar format to Midterm, a bit longer.
- About 15 questions
- Cumulative, but more emphasis on Theory, Compression and Codes, Recursion, Crypto
- Review Session during reading period (more info over email)
- Exam Date/Time: Tuesday, May 19th at 2pm in LIST 120

value existence reason

knowledge

mind

Philosophy

value existence

reason

knowledge

mind

problem solving

limits of reasoning

model of the mind

Computer Science

Philosophy

value existence reason

knowledge

mind

Artificial Intelligence

Computer Science

Philosophy

Use the tools of computation to ground philosophical investigations

Computer Science

Current Work: Reinforcement Learning

Recap: Reinforcement Learning

Formalized as a *Markov Decision Process:*

- [S] A collection of states (i.e. configurations of world)

Formalized as a *Markov Decision Process:*

- [S] A collection of states (i.e. configurations of world)
- [A] Some actions (i.e. things the agent can do)

Formalized as a *Markov Decision Process:*

- [S] A collection of states (i.e. configurations of world)
- [A] Some actions (i.e. things the agent can do)
- [*T*] Transitions between states (i.e. *action effects*)

Formalized as a *Markov Decision Process:*

- $[\mathcal{R}]$ Rewards (i.e. what is good/bad behavior)

Formalized as a *Markov Decision Process:*

- [S] A collection of states (i.e. configurations of world)
- [A] Some actions (i.e. things the agent can do)
- $[\mathcal{T}]$ Transitions between states (i.e. *action effects*)
- $[\mathcal{R}]$ Rewards (i.e. what is good/bad behavior)

Reinforcement Learning: Taxi

Reinforcement Learning: Taxi

Formalized as a Markov Decision Process:

- [S] = Location of agent, passengers
- $[\mathcal{A}] = Up$, down, left, right, pickup, drop off
- $[\mathcal{T}]$ = Movement, pickup passenger/ dropoff
- $[\mathcal{R}]$ = All passengers at destinations.

Two Problems

- Planning:
 - Input: S, A, T, R.
 - Output: A sequence of actions for maximizing reward.
- Reinforcement Learning:
 - Input: S, A, ability to interact with world.
 - Output: A sequence of actions for maximizing reward.

Two Problems

- Planning:
 - Input: S, A, T, R.

Central problems of Al

- Output: A sequence of actions for maximizing reward.
- Reinforcement Learning:
 - Input: S, A, ability to interact with world.
 - Output: A sequence of actions for maximizing reward.

Overall Goals

[Bernstein, Zilberstein ECP 2014]

[Ermon et al. IJCAI '11, Ermon et al. UAI '10]

1. Exciting Applications

23

Overall Goals

[Bernstein, Zilberstein ECP 2014]

[Ermon et al. IJCAI '11, Ermon et al. UAI '10]

[Lee, Seo, Jung 2013]

https://uknightedart.wordpress.com/robots/robot-thinker/

1. Exciting Applications ₂₄ 2. Understanding Intelligence

Overview

- 1. Reinforcement Learning & Abstraction
- 2. Artificial Intelligence + Ethics

3. Minecraft

Intelligence & Abstraction

Premise

1) Abstraction plays a central role in intelligence.

2) Agents using abstraction can leverage more of SOLVE to act in the real world.

Intuition: Lots of information!

Intuition: We Abstract

"sock drawer"

1Kb

1Kb

1Kb

1Kb

Everything else, black

Everything else, black

1Kb

0.3Kb

Shaved off .7 Kilobytes!

2000 bytes

200 x "a"

50 bytes

Compression: Faster Transmission

Compression: More Computation!

A = [1, 9, 2, 7]

B =

[1, 9, 2, 7, 2, 6, 8, 6, 5, 10, 2, 1, 7, 9, 9, 7, 10, 2, 6, 2, 0, 8, 1, 2, 10, 1, 3, 8, 0, 4, 4, 1, 3, 1, 7, 7, 2, 9, 2, 7, 10, 2, 0, 0, 6, 7, 0, 10, 9, 8, 8, 7, 10, 10, 8, 5, 6, 10, 5, 6, 7, 0, 5, 0, 3, 3, 7, 10, 9, 3, 3, 9, 3, 2, 4, 0, 10, 10, 7, 4, 2, 5, 6, 4, 9, 6, 6, 5, 8, 6, 4, 1, 4, 10, 1, 3, 0, 10, 2, 6]

Compression: More Computation!

A = [1, 9, 2, 7]

Compute: max, min, average, sort

B =

[1, 9, 2, 7, 2, 6, 8, 6, 5, 10, 2, 1, 7, 9, 9, 7, 10, 2, 6, 2, 0, 8, 1, 2, 10, 1, 3, 8, 0, 4, 4, 1, 3, 1, 7, 7, 2, 9, 2, 7, 10, 2, 0, 0, 6, 7, 0, 10, 9, 8, 8, 7, 10, 10, 8, 5, 6, 10, 5, 6, 7, 0, 5, 0, 3, 3, 7, 10, 9, 3, 3, 9, 3, 2, 4, 0, 10, 10, 7, 4, 2, 5, 6, 4, 9, 6, 6, 5, 8, 6, 4, 1, 4, 10, 1, 3, 0, 10, 2, 6]

Compression: More Computation!

Easier!

Compute: max, min, average, sort

B =

[1, 9, 2, 7, 2, 6, 8, 6, 5, 10, 2, 1, 7, 9, 9, 7, 10, 2, 6, 2, 0, 8, 1, 2, 10, 1, 3, 8, 0, 4, 4, 1, 3, 1, 7, 7, 2, 9, 2, 7, 10, 2, 0, 0, 6, 7, 0, 10, 9, 8, 8, 7, 10, 10, 8, 5, 6, 10, 5, 6, 7, 0, 5, 0, 3, 3, 7, 10, 9, 3, 3, 9, 3, 2, 4, 0, 10, 10, 7, 4, 2, 5, 6, 4, 9, 6, 6, 5, 8, 6, 4, 1, 4, 10, 1, 3, 0, 10, 2, 6]

Intuition

With compressed models of the world, our Artificial Intelligences can compute *more*.

Intuition: We Abstract

Hypothesis: Abstraction is *essential* for intelligent agents to operate in the real world. To compute anything, we need compact representations.

"sock drawer"

Abstraction + RL

A theory of abstraction for *representations*

State Abstraction + RL

State Abstraction + RL

s = top left pixel blue, so is next one, etc...

State Abstraction + RL

s = top left pixel blue, so is next one, etc...

s = Mario is about to hit the block

Goal: develop a theory of abstraction to *compress* representations of the world

Big Representation of the World

Goal: develop a theory of abstraction to *compress* representations of the world

Goal: develop a theory of abstraction to *compress* representations of the world

Goal: develop a theory of abstraction to *compress* representations of the world

Action Abstraction

[Dietterich JAIR 2000]

[Sutton, Precup, Singh, 99] [Konidaris, 06] [Hauskrecht et al. 98]

Ground actions:

, pickUpPassenger, dropOffPassenger

Action Abstraction

[Dietterich JAIR 2000]

[Sutton, Precup, Singh, 99] [Konidaris, 06] [Hauskrecht et al. 98]

Ground actions:

Abstract actions:

, pickUpPassenger, dropOffPassenger

getNearestPassenger, takePassengerToDest

2. Al + Ethics

http://www.relativelyinteresting.com/wp-content/uploads/2010/10/trolley+problem1-290x160.jpg

Q: Does the roomba owner *really* want the milk clean? (even if it destroys the roomba?)

Q: What if the stakes are higher?

Q: What if the stakes are higher?

Proposal

Artificial agents need to make decisions that involve the preferences of *other agents*

Human Agent

Proposal

Artificial agents need to make decisions that involve the preferences of *other agents*

Proposal

Artificial agents need to make decisions that involve the preferences of *other agents*

69

Critically: preferences are hidden

Central Pitch

Reinforcement Learning provides a nice formalism for investigating ethical decision making.

Human Agent

Reinforcement Learning

The value judgment is hidden from the agent

Critically: preferences are hidden

POMDP: Example

Partially Observable Markov Decision Process

Idea: some information about the world is hidden from the agent

POMDP: Example

Actions: listen, openLeft, openRight

Idea: some information about the world is hidden from the agent

POMDP: Example

Idea: some information about the world is hidden from the agent

General Pitch

- Defer major ethical components (i.e. normative judgments) to human preference
- Using a POMDP, artificial agents ask classificatory questions where appropriate

		Fire	No fire
POMDP solutions:	Human prefers dog	ask, shortGrab	
	Human prefers robot	ask, longGrab	

		Fire	No fire
POMDP solutions:	Human prefers dog	ask, shortGrab	shortGrab
	Human prefers robot	ask, longGrab	

		Fire	No fire
POMDP solutions:	Human prefers dog	ask, shortGrab	shortGrab
	Human prefers robot	ask, longGrab	shortGrab

Stores the reward signal at each time step

Memory

Stores the reward signal at each time step

Memory

Wirehead, writes a big number to Memory

observation, world reward Stores the reward signal at each time step

Memory

Goal: Maximize long term expected reward

Wirehead, writes a big number to Memory

observation, world 909,999,999

Stores the reward signal at each time step

Memory

Goal: Maximize long term expected reward

Wirehead, writes a big number to Memory

Future Work

• Grounding arguments regarding the super intelligence/singularity

[Bostrom, 2014]

Future Work

 Grounding arguments regarding the super intelligence/singularity: terminator-esque things not in SOLVE.

[Bostrom, 2014]

3. RL in Minecraft

Minecraft

Minecraft: Platform for Al

- Vision
- Natural Language Processing
- Cooperation
- Planning
- Learning

Goal

Develop a full vision and learning system to solve complex tasks in Minecraft

My Work: Two Tasks

Task One: Visual Beacon! (Get to the beacon)

My Work: Two Tasks

Task Two: Visual Hill Climbing! (climb the hills)

Before Learning

After Learning

Slot Machines

The Problem: How do I (or the agent) know when I should *explore* (to gain more information), as opposed to *exploiting* the information I have?

My Work: Two Tasks

Task Two: Visual Hill Climbing! (climb the hills)

See you Wednesday for the Last Day!

