
1

April 6th, 2016

Dave Abel

Unit 8: Recursion



Takeaway

2

Repeated self reference, or “recursion”, is 
everywhere, in the world and in computation! It’s 

simple, beautiful, and incredibly powerful.



Outline

3

‣ Definition 

‣ Examples & Intuition 

‣ Recursive Algorithms 

‣ Recursive Searching and Sorting 

‣ Recursion and Theory



Recursion

4

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference



Recursion

5

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example one: A Scratch block is recursive if it 
calls itself:

https://scratch.mit.edu/projects/102993232/#editor


Recursion

6

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example two: a tree!



Recursion

7

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example two: a tree!

A tree is: a stick, with some 
number of trees coming off of 

it.



Recursion

8

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example two: a tree!

A tree is: a stick, with some 
number of trees coming off of 

it.



Recursion

9

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example three: Recursive Shapes!

https://scratch.mit.edu/projects/43424730/#editor


Recursion

10

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example three: Recursive Shapes!

A recursive triangle is: a 
triangle, with a recursive 

triangle inside of it

https://scratch.mit.edu/projects/43424730/#editor


Recursion

11

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ In general, recursive entities can be described as: 

- A simple step 

- A recursive step



Recursion

12

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ In general, recursive entities can be described as: 

- A simple step 

- A recursive step



Recursion

13

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example one: A Scratch block is recursive if it 
calls itself

simple step

recursive step

https://scratch.mit.edu/projects/102993232/#editor


Recursion

14

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Example two: a tree!

A tree is: a stick, with some 
number of trees coming off of 

it.



Recursion

15

‣ Definition: a process, program, or object is said to 
be recursive if it involves repeated self-reference 

‣ Many algorithms are recursive! 

‣ Let’s look at a few.



Recursive Algorithms

16

‣ Problem: Is a word a palindrome? 

- INPUT: a word 

- OUTPUT: True if the word is a palindrome, False 
otherwise. 

‣ Recursive solution: 

- A word is a palindrome if: the outermost two letters 
are the same AND the remaining word is a 
palindrome.



Recursive Algorithms

17

‣ Problem: Is a word a palindrome? 

- INPUT: a word 

- OUTPUT: True if the word is a palindrome, False 
otherwise. 

‣ Recursive solution: 

- A word is a palindrome if: the outermost two letters 
are the same AND the remaining word is a 
palindrome.

Q: What’s the simple step? 
What’s the recursive step?



Recursive Algorithms

18

‣ Problem: Is a word a palindrome? 

- INPUT: a word 

- OUTPUT: True if the word is a palindrome, False 
otherwise. 

‣ Recursive solution: 

- A word is a palindrome if: the outermost two letters 
are the same AND the remaining word is a 
palindrome.



Recursive Palindrome

19

- A word is a palindrome if: the outermost two 
letters are the same AND the remaining word is a 
palindrome. 

‣ This basically tells us a solution for solving the 
problem

https://scratch.mit.edu/projects/102993232/#editor


Recursive Algorithms

20

‣ Problem: compute the length of a word 

- INPUT: A word 

- OUTPUT: The length of the word



Recursive Algorithms

21

‣ Problem: compute the length of a word 

- INPUT: A word 

- OUTPUT: The length of the word

Brainstorm a recursive solution with your neighbors!



Recursive Algorithms

22

‣ Problem: compute the length of a word 

- INPUT: A word 

- OUTPUT: The length of the word 

‣ Here’s my solution: 

‣ The length of a word is just 1, plus the length the 
word you get if you remove one character.

https://scratch.mit.edu/projects/102993232/#editor


Recursive Algorithms

23

‣ Problem: Factorial 

- INPUT: A number 

- OUTPUT: The factorial of that number 

- Example: factorial(4) is 4*3*2*1, factorial(6) is 
6*5*4*3*2*1



Recursive Algorithms

24

‣ Problem: Factorial 

- INPUT: A number 

- OUTPUT: The factorial of that number 

- Example: factorial(4) is 4*3*2*1, factorial(6) is 
6*5*4*3*2*1

Brainstorm a recursive solution with your neighbors!



Recursive Algorithms

25

‣ Problem: Factorial 

- INPUT: A number 

- OUTPUT: The factorial of that number 

‣ Observation: 4! = 4*3!, 3! = 3*2!, 2! = 2*1!, 1! = 1



Recursive Algorithms

26

‣ Problem: Factorial 

- INPUT: A number 

- OUTPUT: The factorial of that number 

‣ Observation: 4! = 4*3!, 3! = 3*2!, 2! = 2*1!, 1! = 1 

‣ Here’s my solution: 

‣ The factorial of a number is just that number times 
the factorial of one minus that number.

Simple step

Recursive step

https://scratch.mit.edu/projects/102993232/#editor


Infinite Recursion

27

https://scratch.mit.edu/projects/102258795/#editor


Recursive Algorithms

28

‣ Problem: compute the length of a word 

- INPUT: A word 

- OUTPUT: The length of the word 

‣ Here’s my solution: 

‣ The length of a word is just 1, plus the length the 
word you get if you remove one character. 

‣ Critically we need tell the program how to stop.

https://scratch.mit.edu/projects/102993232/#editor


Recursion: Base Case

29

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.



Recursion: Base Case

30

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.



Recursion: Base Case

31

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.

simple step

recursive step

base case



Recursion: Base Case

32

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.



Recursion: Base Case

33

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.

simple step

recursive step

base case



Recursion: Base Case

34

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.

Discuss with your neighbor(s): what is the simple step? 
what is the recursive step? what is the base case?



Recursion: Base Case

35

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop.

Discuss with your neighbor(s): what is the simple step? 
what is the recursive step? what is the base case?

simple step

recursive step

base case



Double Base Case

36

‣ Recursive Algorithms have a base case, which 
specifies when the algorithm should stop. 

‣ Remember the fibonacci sequence? 

- Start with the sequence 1,1 

- To generate the next number in the sequence, 
add the two previous numbers! 

- So the next numbers are 2, then 3, then 5, etc.



Double Base Case

37

‣ Consider the problem of writing the first N items of the 
fibonacci sequence.

‣ Q: What is the base case? Simple step? Recursive step?

‣ Remember the fibonacci sequence? 

- Start with the sequence 1,1 

- To generate the next number in the sequence, add the 
two previous numbers! 

- Generate the next N-1 numbers.



Double Base Case

38

‣ Consider the problem of writing the first N items of the 
fibonacci sequence.

‣ Q: What is the base case? Simple step? Recursive step?

‣ Remember the fibonacci sequence? 

- Start with the sequence 1,1 

- To generate the next number in the sequence, add the 
two previous numbers! 

‣ Generate the next N-1 Numbers

simple 
step

recursive step

base 
cases



Problem Spec: Fibonacci

39

‣ INPUT: A number, N 

‣ OUTPUT: The first N numbers of the Fibonacci 
Sequence.



Problem Spec: Fibonacci

40

‣ INPUT: A number, N 

‣ OUTPUT: The first N numbers of the Fibonacci 
Sequence. 

‣ Math form: f(n) = f(n-1) + f(n-2), plus our base 
cases. Otherwise n goes off to negative infinity!



Problem Spec: Fibonacci

41

‣ INPUT: A number, N 

‣ OUTPUT: The first N numbers of the Fibonacci 
Sequence. 

‣ Math form: f(n) = f(n-1) + f(n-2), plus our base 
cases. Otherwise n goes off to negative infinity! 

‣ In Scratch

https://scratch.mit.edu/projects/98504368/#editor


Recursion: Recap

42

‣ Definition: a process, program, or object is said to be 
recursive if it involves repeated self-referenceSub bullet 
one 

‣ In general, recursive entities can be described as: 

- A simple step

- A recursive step

- Recursion can be infinite 

- For recursion to be finite, we need a base case.


