
1

March 12th, 2016

Dave Abel

Unit 7: Theory

As Promised:

2

Any Midterm questions?

Also: one side of a 3”x 5” index card

AI Update!

3

AlphaGo 3-1 against Lee Sedol

(He did it! Woohoo!)

http://www.bbc.com/news/technology-35771705

Theory

4

‣ Revisiting Growth Rates

‣ Problem Classes

- SOLVE

- VERIFY

‣ The biggest unanswered question in Computer Science!

- Implications

‣ Unsolvable problems

‣ Uncountable things

‣ Measuring Simplicity, Occam’s Razor

Theory

5

‣ Revisiting Growth Rates

‣ Problem Classes

- SOLVE

- VERIFY

‣ ***The biggest unanswered question in Computer Science!***

- Implications

‣ Unsolvable problems

‣ Uncountable things

‣ Measuring Simplicity, Occam’s Razor

Theory: Takeaway

6

Some problems are unsolvable, period.

Theory: Takeaway

7

Some problems are unsolvable, period.

Theory: Takeaway

8

Some problems are unsolvable, period.

We can characterize and relate how hard
each and every problem is by dividing

problems into classes.

Theory: Takeaway

9

Some problems are unsolvable, period.

Q: Are problems in VERIFY, also in SOLVE?

This is the biggest unanswered question in computer
science.

We can characterize and relate how hard
each and every problem is by dividing

problems into classes.

Growth Rate: Definition

10

I.e. sort a length 2 list vs. sorting a length 203487 list

1. Definition: The growth rate of an algorithm is the
number of primitive operations an algorithm must
execute, in the worst case, in order to complete its
job.

2. We call it the growth rate because it’s how the
number of operations the computer has to execute
grows as the size of our input grows.

Growth Rate: Definition

11

1. Definition: The growth rate of an algorithm is the
number of primitive operations an algorithm must
execute, in the worst case, in order to complete its
job.

2. We call it the growth rate because it’s how the
number of operations the computer has to execute
grows as the size of our input grows.

I.e. sort a length 2 list vs. sorting a length 203487 list

Reminder: In the worst case!

Revisiting Growth Rates

12

Remember Random Search?
It took way longer with a

longer list.

https://scratch.mit.edu/projects/97902326/#editor

Revisiting Growth Rates

13

Remember Random Search? It
took way longer with a longer list.

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: What, if anything,
is out here?

https://scratch.mit.edu/projects/97902326/#editor

Revisiting Growth Rates

14

Remember Random Search? It
took way longer with a longer list.

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: What, if anything,
is out here? random search,

big list

https://scratch.mit.edu/projects/97902326/#editor

15

‣ INPUT: Map of solar system, description of physical
laws, summary of current technology.

‣ OUTPUT: A method for colonizing Mars.

Problem Specification Example

Revisiting Growth Rates

16

Remember Random Search? It
took way longer with a longer list.

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: What, if anything,
is out here?

Mars!

https://scratch.mit.edu/projects/97902326/#editor

Revisiting Growth Rates

17

Remember Random Search? It
took way longer with a longer list.

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: What, if anything,
is out here? Mars!

https://scratch.mit.edu/projects/97902326/#editor

Growth Rates: The Point

18

Remember Random Search?
It took way longer with a

longer list.

The Point: we want to know how many things
we have to do as our input grows, because

we want to know what problems are solvable
before the sun goes poof! (and which ones

will take the drop of a hat)

https://scratch.mit.edu/projects/97902326/#editor

Growth Rates

19

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search:

Growth Rates

20

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search:

Growth Rates

21

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort:

Growth Rates

22

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort: N2

- Build the Truth Table:

Growth Rates

23

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort: N2

- Build the Truth Table: 2N

Growth Rates

24

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort: N2

- Build the Truth Table: 2N

‣ But don’t we care about problems?

Growth Rates

25

‣ What if random search were the only way to search
we had discovered so far?

random search

‣ But don’t we care about problems?

Growth Rates

26

‣ What if random search were the only way to search
we had discovered so far?

‣ This isn’t quite the relevant bit..
random search

‣ But don’t we care about problems?

Growth Rates

27

‣ What if random search were the only way to search
we had discovered so far?

‣ This isn’t quite the relevant bit..

‣ But don’t we care about problems?

‣ What we really ought to care about is how fast we
can solve the problem search, period.

Growth Rates

28

‣ What we really ought to care about is how fast we
can solve the problem search, period.

‣ What we’ll talk about in this unit is:

Q: For a given problem, what’s the fastest
possible algorithm for solving that problem?

Growth Rates

29

‣ What we really ought to care about is how fast we
can solve the problem search, period.

‣ What we’ll talk about in this unit is:

Q: For a given problem, what’s the fastest
possible algorithm for solving that problem?

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Growth Rates

30

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Growth Rates

31

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Growth Rates

32

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Growth Rates

33

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Growth Rates

34

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: Is Search in this?

Growth Rates

35

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: Is Search in this?

A: Yes! If this list is sorted, we get
log(N) from Binary Search, if

unsorted, N from Linear Search

Growth Rates

36

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: What other problems are in here?

Growth Rates

37

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: What other problems are in here?

Computing the median?

Growth Rates

38

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: What other problems are in here?

Computing the median!

Sorting?

Growth Rates

39

Problems whose fastest (correct)
algorithm have growth rates of at most N

Q: Moreover, what’s the growth rate of the fastest
(correct) algorithm for solving each problem?

Q: What other problems are in here?

Computing the median!

Sorting..

Growth Rates

40

We can do this for all relevant growth rates.

Growth Rates

41

We can do this for all relevant growth rates:

1. Linear or faster (N, log(N), etc.)

Growth Rates

42

We can do this for all relevant growth rates:

1. Linear or faster (N, log(N), etc.)

2. Polynomial or faster (N5, N20, N, etc.)

Growth Rates

43

Example: 5N3 + 2N2 + N

We can do this for all relevant growth rates:

1. Linear or faster (N, log(N), etc.)

2. Polynomial or faster (N5, N20, N, etc.)

Example: 8N27 + 9N5

Growth Rates

44

Example: N3

We can do this for all relevant growth rates:

1. Linear or faster (N, log(N), etc.)

2. Polynomial or faster (N5, N20, N, etc.)

Example: N27

Growth Rates

45

We can do this for all relevant growth rates:

1. Linear or faster (N, log(N), etc.)

2. Polynomial or faster (N5, N20, N, etc.)

3. Exponential or faster (2N, 3N, etc.)

Linear

Polynomial

Exponential

Growth Rates

46

Linear

Polynomial

Exponential

Growth Rates

47

Linear

Polynomial

Exponential

Reminder: these are the problems that have algorithms
whose growth rates are at most Linear, Polynomial, etc.

Growth Rates

48

Linear

Polynomial

Exponential

Important: polynomial is green because that’s the class of
problems we consider solvable.

Class: SOLVE

49

Linear

SOLVE

Important: polynomial is green because that’s the class of
problems we consider solvable.

In CS8, we’ll
call this class,

SOLVE

Exponential

Reminder: Exponentials are BIG

50

Linear

SOLVE

2100 = 1,267,650,600,228,229,401,496,703,205,376

Clicker Question:

51

Linear

SOLVE

Q: Is the Sorting problem in SOLVE?

52

Linear

SOLVE

Q: Is the Sorting problem in SOLVE?

[A] Yes!

[B] No!

[C] I’m confused :/

Clicker Question:

Clicker Answer:

53

Linear

SOLVE

Q: Is the Sorting problem in SOLVE?

[A] Yes!

[B] No!

Clicker Answer:

54

Linear

SOLVE

Q: Is the Sorting problem in SOLVE?

[A] Yes!

[B] No!

Reminder: SOLVE are the problems that have algorithms
whose growth rates are at most Polynomial.

Clicker Answer:

55

Linear

SOLVE

Q: Is the Sorting problem in SOLVE?

[A] Yes!

[B] No!

Reminder: SOLVE are the problems that have algorithms
whose growth rates are at most Polynomial.

Selection Sort: N2

SOLVE

56

SOLVE

Q: Can we solve a problem
efficiently?

A: Is it in SOLVE?

Reminder:

57

‣ Problem Specification:

- INPUT: some things

- OUTPUT: some true stuff about the things

Reminder:

58

‣ Problem Specification:

- INPUT: some things

- OUTPUT: some true stuff about the things

‣ Example:

- INPUT: A Sudoku board

- OUTPUT: Solution to the Sudoku board

Another View: Verification

59

‣ Verification Example:

- INPUT: An empty Sudoku board, a proposed solution to
that Sudoku board

- OUTPUT: True if the Sudoku board is a correct solution

Another View: Verification

60

‣ Another Verification Example:

- INPUT: An empty Crossword, a proposed solution to
that Crossword

- OUTPUT: True if the filled out Crossword board is a
correct solution

Another View: Verification

61

‣ Another Verification Example:

- INPUT: A list, a proposed sorting of that list

- OUTPUT: True if the proposed sorting is actually in
sorted order.

Discuss!

62

‣ In light of recent events consider how making the
perfect single move in the Game Go can be
pitched as a verification problem!

Discuss!

63

‣ In light of recent events consider how making the
perfect single move in the Game Go can be
pitched as a verification problem!

Talk with your neighbors for a minute or two

Discuss!

64

‣ In light of recent events consider how making the
perfect single move in the Game Go can be
pitched as a verification problem!

INPUT: A configuration of the Go board, a Go move

OUTPUT: True if the move is the perfect move.

Another Class: VERIFY

65

The class of problems VERIFY is the set of problems where
we can verify solutions

