
1

March 16th, 2016

Dave Abel

Unit 7: Theory

As Promised:

2

Any Midterm questions?

Growth Rates

3

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort: N2

- Build the Truth Table: 2N

Growth Rates

4

‣ So far, we’ve talked about the growth rates of
algorithms, e.g. Binary Search, Selection Sort:

- Linear Search: N

- Binary Search: log(N)

- Selection Sort: N2

- Build the Truth Table: 2N

‣ But don’t we care about problems?

Growth Rates

5

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Growth Rates

6

Things a regular computer
can compute before the sun

goes supernova

Things that can
be computed, period.

Things a domino computer
could compute before the

sun goes supernova

Q: What problems can we solve in a
reasonable amount of time?

Growth Rates

7

Linear

Polynomial

Exponential

SOLVE

8

SOLVE

Q: Can we solve a problem
efficiently?

A: Is it in SOLVE?

Reminder:

9

‣ Problem Specification:

- INPUT: some things

- OUTPUT: some true stuff about the things

Reminder:

10

‣ Problem Specification:

- INPUT: some things

- OUTPUT: some true stuff about the things

‣ Example:

- INPUT: A Sudoku board

- OUTPUT: Solution to the Sudoku board

Another View: Verification

11

‣ Verification Example:

- INPUT: An empty Sudoku board, a proposed solution to
that Sudoku board

- OUTPUT: True if the Sudoku board is a correct solution

Another View: Verification

12

‣ Another Verification Example:

- INPUT: An empty Crossword, a proposed solution to
that Crossword

- OUTPUT: True if the filled out Crossword board is a
correct solution

Another View: Verification

13

‣ Another Verification Example:

- INPUT: A list, a proposed sorting of that list

- OUTPUT: True if the proposed sorting is actually in
sorted order.

Alpha Go

14

‣ In light of recent events, consider how making the
perfect single move in the Game Go can be
pitched as a verification problem!

INPUT: A configuration of the Go board, a Go move

OUTPUT: True if the move is the perfect move.

Another Class: VERIFY

15

Definition: The class of problems VERIFY is the set of
problems where we can efficiently verify solutions

Another Class: VERIFY

16

Q: Can we efficiently verify Sudoku?

Definition: The class of problems VERIFY is the set of
problems where we can efficiently verify solutions

Another Class: VERIFY

17

Q: Can we efficiently verify Sudoku?

A: Totally! Just make sure each cell,
row, column has 1-9.

Definition: The class of problems VERIFY is the set of
problems where we can efficiently verify solutions

Another Class: VERIFY

18

Q: Can we efficiently verify Go?

A: Definitely not!

Definition: The class of problems VERIFY is the set of
problems where we can efficiently verify solutions

Some Clicker Questions!

19

Q: Which of these describes the SOLVE class?

SOLVE

Some Clicker Questions!

20

Q: Which of these describes the SOLVE class?

SOLVE

[A] Problems that we think are
efficiently solvable

[B] Algorithms whose growth
rate is N or faster

[C] Problems where candidate
solutions can be verified easily

[D] I’m confused

Some Clicker Questions!

21

Q: Which of these describes the SOLVE class?

SOLVE

[A] Problems that we think are
efficiently SOLVable

[B] Algorithms whose growth
rate is N or faster

[C] Problems where candidate
solutions can be verified easily

[D] I’m confused

Some Clicker Questions!

22

Q: Which of these describes the VERIFY class?

VERIFY

Some Clicker Questions!

23

Q: Which of these describes the VERIFY class?

VERIFY

[A] Problems that we think are
efficiently solvable

[B] Algorithms whose growth
rate is N or faster

[C] Problems where candidate
solutions can be verified easily

[D] I’m confused

Some Clicker Questions!

24

Q: Which of these describes the VERIFY class?

VERIFY

[A] Problems that we think are
efficiently solvable

[C] Problems where candidate
solutions can be VERIFied

easily
[D] I’m confused

[B] Algorithms whose growth
rate is N or faster

Clicker Question!

25

SOLVE

Q: Given any problem known to
be in SOLVE, do we know

anything about its status relative
to VERIFY?

Clicker Question!

26

SOLVE

Q: Given any problem known to
be in SOLVE, do we know

anything about its status relative
to VERIFY?

[A] Yes, we know it’s in VERIFY

[B] Yes, we know it’s not in VERIFY

[C] Nope!

[D] I’m confused!

Clicker Hint!

27

SOLVE

Q: Given any problem known to
be in SOLVE, do we know

anything about its status relative
to VERIFY?

(Think about Sorting)

[A] Yes, we know it’s in VERIFY

[B] Yes, we know it’s not in VERIFY

[C] Nope!

[D] I’m confused!

Clicker Answer!

28

SOLVE

Q: Given any problem known to
be in SOLVE, do we know

anything about its status relative
to VERIFY?

(Think about Sorting)

[A] Yes, we know it’s in VERIFY

[B] Yes, we know it’s not in VERIFY

[C] Nope!

[D] I’m confused!

Neat Observation!

29

SOLVE

Any Problem in SOLVE is in
VERIFY

Because you can always just
solve the problem, then check

to see if its the solution you
were asked to verify!

Neat Observation!

30

SOLVE Example: Sorting

Given a sorting, run Selection Sort
and then compare answers.

Any Problem in SOLVE is in
VERIFY

Clicker Question!

31

SOLVE

Q: Given any problem known to
be in VERIFY, do we know

anything about its status relative
to SOLVE?

Clicker Question!

32

SOLVE

Q: Given any problem known to
be in VERIFY, do we know

anything about its status relative
to SOLVE?

[A] Yes, we know it’s in SOLVE

[B] Yes, we know it’s not in SOLVE

[C] Nope!

Clicker ANSWER!

33

SOLVE

Q: Given any problem known to
be in VERIFY, do we know

anything about its status relative
to SOLVE?

[A] Yes, we know it’s in SOLVE

[B] Yes, we know it’s not in SOLVE

[C] Nope! (so far)

This Is It!

34

Q: Given any problem known to be in VERIFY, do we
know anything about its status relative to SOLVE?

A: Nope! (so far)

This is considered the most important
unanswered question in all of computer science.

Rephrased

35

This is considered the most important
unanswered question in all of computer science.

Q: If a problem’s solution can be verified efficiently,
can it also be solved efficiently?

Rephrased

36

This is considered the most important
unanswered question in all of computer science.

Q: If a problem’s solution can be verified efficiently,
can it also be solved efficiently?

(for any problem we can think of)

Rephrased

37

This is considered the most important
unanswered question in all of computer science.

Q: If a problem’s solution can be verified efficiently, can
it also be solved efficiently?

Observation: We could try guessing every answer and
using our efficient verifier to verify it.

Rephrased

38

Observation: We could try guessing every answer and
using our efficient verifier to verify it.

0 0 0 0 0 0
0 0 0

0 0 0
0 0 0

0 0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0

0 0 0
0 0

0 0
0 0

0 0
0 00

0

0 0 0

0

VERIFIER

Rephrased

39

Observation: We could try guessing every answer and
using our efficient verifier to verify it.

00 0000000

000000000
000000

000000
00

00000

0 00 0
0 00 00

0

0 00
0

VERIFIER NOT A
SOLUTION

Rephrased

40

Observation: We could try guessing every answer and
using our efficient verifier to verify it.

00 0000000

000000000
000000

000000
00

00000

0 00 0
0 00 00

0

0 00
0

VERIFIER NOT A
SOLUTION

But what about problems for which there are too many
possible answers? (e.g Chess, Go, etc.)

Some Terminology

41

VERIFY is commonly called “NP”, for non-
deterministic polynomial.

SOLVE is commonly called “P” for polynomial

(but don’t worry about the names!)

Some Terminology

42

VERIFY is commonly called “NP”, for non-
deterministic polynomial

SOLVE is commonly called “P” for polynomial

The question is commonly called “P versus NP”

https://en.wikipedia.org/wiki/P_versus_NP_problem

P versus NP

43

The question is commonly called “P versus NP”

‣ One of seven problems pitched by the Clay
Mathematics Institute in the year 2000 as the most
important unsolved mathematical questions.

‣ Solve one? Get $1,000,000.

‣ Only one has been solved so far (not P vs. NP).

https://en.wikipedia.org/wiki/P_versus_NP_problem

SOLVE versus VERIFY

44

SOLVE

VERIFY

SOLVE

VERIFY
&

Q: If a problem’s solution can be verified
efficiently, can it also be solved efficiently?

A: No! A: Yes!

P versus NP

45

Reflection

46

‣ We can think about problem classes in terms of how fast
the fastest possible algorithm for the problem is.

‣ One class of interest is SOLVE, the set of problems we can
solve efficiently (before sun goes poof)!

‣ Another class of interest is VERIFY, the set of problems
whose solutions we can verify efficiently!

‣ If a problem is in SOLVE, we know it’s in VERIFY.

‣ Q: If a problem is in VERIFY, is it also in solve? Is the most
important unanswered question in computer science.

Up Next

47

‣ Some Implications

‣ We’ll look at some famous example problems that
are in VERIFY.

‣ Revisiting The Halting Problem, more discussions
about the unsolvable.

Implications

Implications

48

Implications:
VERIFY = SOLVE

49

‣ Then anytime a problem has a method for verifying
a solution efficiently, there’s also a method for
finding a solution efficiently.

‣ Here’s a totally insane result if that’s true:

- We already have an efficient method for verifying
mathematical proofs.

- Therefore, there is an efficient method for finding
mathematical proofs of arbitrary statements.

50

‣ Then anytime a problem has a method for verifying a solution
efficiently, there’s also a method for finding a solution efficiently.

‣ Here’s a totally insane result if that’s true:

- We have an efficient method for verifying mathematical
proofs.

- Therefore, there is an efficient method for finding
mathematical proofs of arbitrary statements.

- That means we can solve every other millennium
problem!

Implications:
VERIFY = SOLVE

51

‣ Then anytime a problem has a method for verifying
a solution efficiently, there’s also a method for
finding a solution efficiently.

‣ Here’s another totally insane result if that’s true:

- The security systems we currently rely on
become useless overnight.

- We’ll talk more in Cryptography about this!

Implications:
VERIFY = SOLVE

So, does VERIFY = SOLVE?

52

SOLVE

VERIFY

SOLVE

VERIFY
&

A: No! A: Yes!

Q: If a problem’s solution can be verified efficiently,
can it also be solved efficiently?

Clicker Question!

53

SOLVE

VERIFY

SOLVE

VERIFY
&

[A]: No! [B]: Yes!

Q: What do you think?

[C]: I’m confused

So, does VERIFY = SOLVE?

54

SOLVE

VERIFY

SOLVE

VERIFY
&

A: No! A: Yes!

Most computer scientists think the answer is “No”

